Loading…
Insight into adaption to hypoxia in Tibetan chicken embryonic brains using lipidomics
Tibetan chickens (Gallus gallus; TBCs) are a good model for studying hypoxia-related challenges. However, lipid composition in TBC embryonic brains has not been elucidated. In this study, we characterized brain lipid profiles of embryonic day 18 TBCs and dwarf laying chickens (DLCs) during hypoxia (...
Saved in:
Published in: | Biochemical and biophysical research communications 2023-09, Vol.671, p.183-191 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tibetan chickens (Gallus gallus; TBCs) are a good model for studying hypoxia-related challenges. However, lipid composition in TBC embryonic brains has not been elucidated. In this study, we characterized brain lipid profiles of embryonic day 18 TBCs and dwarf laying chickens (DLCs) during hypoxia (13% O2, HTBC18, and HDLC18) and normoxia (21% O2, NTBC18, and NDLC18) by using lipidomics. A total of 50 lipid classes, including 3540 lipid molecular species, were identified and grouped into glycerophospholipids, sphingolipids, glycerolipids, sterols, prenols, and fatty acyls. Of these lipids, 67 and 97 were expressed at different levels in the NTBC18 and NDLC18, and HTBC18 and HDLC18 samples, respectively. Several lipid species, including phosphatidylethanolamines (PEs), hexosylceramides, phosphatidylcholines (PCs), and phospha-tidylserines (PSs), were highly expressed in HTBC18. These results suggest that TBCs adapt bet-ter to hypoxia than DLCs and may have distinct cell membrane composition and nervous system development, at least partly owing to differential expression of several lipid species. One tri-glyceride, one PC, one PS, and three PE lipids were identified as potential markers that discrim-inated between lipid profiles of the HTBC18 and HDLC18 samples. The present study provides valuable information about the dynamic composition of lipids in TBCs that may explain the adaptation of this species to hypoxia.
•Lipid profile characterization of TBCs embryonic brain has been little examined.•Hypoxia leads to an altered lipid profile between TBCs and lowland chicken.•TBCs have better nervous system development regulated by different lipids.•We provides basic data for exploring hypoxia-induced problems associated with lipid. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2023.05.084 |