Loading…

Electric Field Manipulation of Defects and Schottky Barrier Control inside ZnO Nanowires

We directly measure the three-dimensional movement of intrinsic point defects driven by applied electric fields inside ZnO nano- and micro-wire metal–semiconductor–metal device structures. Using depth- and spatially resolved cathodoluminescence spectroscopy (CLS) in situ to map the spatial distribut...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-06, Vol.15 (25), p.30944-30955
Main Authors: Haseman, Micah S., Gao, Hantian, Duddella, Kalpak, Brillson, Leonard J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-5833f2edc9d95d552cf6e5266cb977e8be7cd0173d89779a76b583743cc8ae23
cites cdi_FETCH-LOGICAL-a330t-5833f2edc9d95d552cf6e5266cb977e8be7cd0173d89779a76b583743cc8ae23
container_end_page 30955
container_issue 25
container_start_page 30944
container_title ACS applied materials & interfaces
container_volume 15
creator Haseman, Micah S.
Gao, Hantian
Duddella, Kalpak
Brillson, Leonard J.
description We directly measure the three-dimensional movement of intrinsic point defects driven by applied electric fields inside ZnO nano- and micro-wire metal–semiconductor–metal device structures. Using depth- and spatially resolved cathodoluminescence spectroscopy (CLS) in situ to map the spatial distributions of local defect densities with increasing applied bias, we drive the reversible conversion of metal–ZnO contacts from rectifying to Ohmic and back. These results demonstrate how defect movements systematically determine Ohmic and Schottky barriers to ZnO nano- and microwires and how they can account for the widely reported instability in nanowire transport. Exceeding a characteristic threshold voltage, in situ CLS reveals a current-induced thermal runaway that drives the radial diffusion of defects toward the nanowire free surface, causing VO defects to accumulate at the metal–semiconductor interfaces. In situ post- vs pre-breakdown CLS reveal micrometer-scale wire asperities, which X-ray photoelectron spectroscopy (XPS) finds to have highly oxygen-deficient surface layers that can be attributed to the migration of preexisting VO species. These findings show the importance of in-operando intrinsic point-defect migration during nanoscale electric field measurements in general. This work also demonstrates a novel method for ZnO nanowire refinement and processing.
doi_str_mv 10.1021/acsami.3c02132
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2825810457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825810457</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-5833f2edc9d95d552cf6e5266cb977e8be7cd0173d89779a76b583743cc8ae23</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EolBYGZFHhJTiR54jlBaQCh3ogFgix74RLold7ESo_x6jlG5M9175fJ_kg9AFJRNKGL0R0otWT7gMB2cH6IQWcRzlLGGH-z2OR-jU-zUhKWckOUYjnnEa4vwEvc0akJ3TEs81NAo_C6M3fSM6bQ22Nb6HOrx7LIzCr_LDdt3nFt8J5zQ4PLWmc7bB2nitAL-bJX4Rxn5rB_4MHdWi8XC-m2O0ms9W08dosXx4mt4uIsE56aIk57xmoGShikQlCZN1CglLU1kVWQZ5BZlUhGZc5eEuRJZWIZLFXMpcAONjdDXUbpz96sF3Zau9hKYRBmzvSxZU5JTESRbQyYBKZ713UJcbp1vhtiUl5a_McpBZ7mSGwOWuu69aUHv8z14ArgcgBMu17Z0JP_2v7QcR536y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825810457</pqid></control><display><type>article</type><title>Electric Field Manipulation of Defects and Schottky Barrier Control inside ZnO Nanowires</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Haseman, Micah S. ; Gao, Hantian ; Duddella, Kalpak ; Brillson, Leonard J.</creator><creatorcontrib>Haseman, Micah S. ; Gao, Hantian ; Duddella, Kalpak ; Brillson, Leonard J.</creatorcontrib><description>We directly measure the three-dimensional movement of intrinsic point defects driven by applied electric fields inside ZnO nano- and micro-wire metal–semiconductor–metal device structures. Using depth- and spatially resolved cathodoluminescence spectroscopy (CLS) in situ to map the spatial distributions of local defect densities with increasing applied bias, we drive the reversible conversion of metal–ZnO contacts from rectifying to Ohmic and back. These results demonstrate how defect movements systematically determine Ohmic and Schottky barriers to ZnO nano- and microwires and how they can account for the widely reported instability in nanowire transport. Exceeding a characteristic threshold voltage, in situ CLS reveals a current-induced thermal runaway that drives the radial diffusion of defects toward the nanowire free surface, causing VO defects to accumulate at the metal–semiconductor interfaces. In situ post- vs pre-breakdown CLS reveal micrometer-scale wire asperities, which X-ray photoelectron spectroscopy (XPS) finds to have highly oxygen-deficient surface layers that can be attributed to the migration of preexisting VO species. These findings show the importance of in-operando intrinsic point-defect migration during nanoscale electric field measurements in general. This work also demonstrates a novel method for ZnO nanowire refinement and processing.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c02132</identifier><identifier>PMID: 37311023</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-06, Vol.15 (25), p.30944-30955</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-5833f2edc9d95d552cf6e5266cb977e8be7cd0173d89779a76b583743cc8ae23</citedby><cites>FETCH-LOGICAL-a330t-5833f2edc9d95d552cf6e5266cb977e8be7cd0173d89779a76b583743cc8ae23</cites><orcidid>0000-0003-3527-9761 ; 0000-0003-3008-5036 ; 0000-0001-9988-7526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37311023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haseman, Micah S.</creatorcontrib><creatorcontrib>Gao, Hantian</creatorcontrib><creatorcontrib>Duddella, Kalpak</creatorcontrib><creatorcontrib>Brillson, Leonard J.</creatorcontrib><title>Electric Field Manipulation of Defects and Schottky Barrier Control inside ZnO Nanowires</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We directly measure the three-dimensional movement of intrinsic point defects driven by applied electric fields inside ZnO nano- and micro-wire metal–semiconductor–metal device structures. Using depth- and spatially resolved cathodoluminescence spectroscopy (CLS) in situ to map the spatial distributions of local defect densities with increasing applied bias, we drive the reversible conversion of metal–ZnO contacts from rectifying to Ohmic and back. These results demonstrate how defect movements systematically determine Ohmic and Schottky barriers to ZnO nano- and microwires and how they can account for the widely reported instability in nanowire transport. Exceeding a characteristic threshold voltage, in situ CLS reveals a current-induced thermal runaway that drives the radial diffusion of defects toward the nanowire free surface, causing VO defects to accumulate at the metal–semiconductor interfaces. In situ post- vs pre-breakdown CLS reveal micrometer-scale wire asperities, which X-ray photoelectron spectroscopy (XPS) finds to have highly oxygen-deficient surface layers that can be attributed to the migration of preexisting VO species. These findings show the importance of in-operando intrinsic point-defect migration during nanoscale electric field measurements in general. This work also demonstrates a novel method for ZnO nanowire refinement and processing.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EolBYGZFHhJTiR54jlBaQCh3ogFgix74RLold7ESo_x6jlG5M9175fJ_kg9AFJRNKGL0R0otWT7gMB2cH6IQWcRzlLGGH-z2OR-jU-zUhKWckOUYjnnEa4vwEvc0akJ3TEs81NAo_C6M3fSM6bQ22Nb6HOrx7LIzCr_LDdt3nFt8J5zQ4PLWmc7bB2nitAL-bJX4Rxn5rB_4MHdWi8XC-m2O0ms9W08dosXx4mt4uIsE56aIk57xmoGShikQlCZN1CglLU1kVWQZ5BZlUhGZc5eEuRJZWIZLFXMpcAONjdDXUbpz96sF3Zau9hKYRBmzvSxZU5JTESRbQyYBKZ713UJcbp1vhtiUl5a_McpBZ7mSGwOWuu69aUHv8z14ArgcgBMu17Z0JP_2v7QcR536y</recordid><startdate>20230628</startdate><enddate>20230628</enddate><creator>Haseman, Micah S.</creator><creator>Gao, Hantian</creator><creator>Duddella, Kalpak</creator><creator>Brillson, Leonard J.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3527-9761</orcidid><orcidid>https://orcid.org/0000-0003-3008-5036</orcidid><orcidid>https://orcid.org/0000-0001-9988-7526</orcidid></search><sort><creationdate>20230628</creationdate><title>Electric Field Manipulation of Defects and Schottky Barrier Control inside ZnO Nanowires</title><author>Haseman, Micah S. ; Gao, Hantian ; Duddella, Kalpak ; Brillson, Leonard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-5833f2edc9d95d552cf6e5266cb977e8be7cd0173d89779a76b583743cc8ae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haseman, Micah S.</creatorcontrib><creatorcontrib>Gao, Hantian</creatorcontrib><creatorcontrib>Duddella, Kalpak</creatorcontrib><creatorcontrib>Brillson, Leonard J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haseman, Micah S.</au><au>Gao, Hantian</au><au>Duddella, Kalpak</au><au>Brillson, Leonard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Field Manipulation of Defects and Schottky Barrier Control inside ZnO Nanowires</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-06-28</date><risdate>2023</risdate><volume>15</volume><issue>25</issue><spage>30944</spage><epage>30955</epage><pages>30944-30955</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We directly measure the three-dimensional movement of intrinsic point defects driven by applied electric fields inside ZnO nano- and micro-wire metal–semiconductor–metal device structures. Using depth- and spatially resolved cathodoluminescence spectroscopy (CLS) in situ to map the spatial distributions of local defect densities with increasing applied bias, we drive the reversible conversion of metal–ZnO contacts from rectifying to Ohmic and back. These results demonstrate how defect movements systematically determine Ohmic and Schottky barriers to ZnO nano- and microwires and how they can account for the widely reported instability in nanowire transport. Exceeding a characteristic threshold voltage, in situ CLS reveals a current-induced thermal runaway that drives the radial diffusion of defects toward the nanowire free surface, causing VO defects to accumulate at the metal–semiconductor interfaces. In situ post- vs pre-breakdown CLS reveal micrometer-scale wire asperities, which X-ray photoelectron spectroscopy (XPS) finds to have highly oxygen-deficient surface layers that can be attributed to the migration of preexisting VO species. These findings show the importance of in-operando intrinsic point-defect migration during nanoscale electric field measurements in general. This work also demonstrates a novel method for ZnO nanowire refinement and processing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37311023</pmid><doi>10.1021/acsami.3c02132</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3527-9761</orcidid><orcidid>https://orcid.org/0000-0003-3008-5036</orcidid><orcidid>https://orcid.org/0000-0001-9988-7526</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-06, Vol.15 (25), p.30944-30955
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2825810457
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Surfaces, Interfaces, and Applications
title Electric Field Manipulation of Defects and Schottky Barrier Control inside ZnO Nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Field%20Manipulation%20of%20Defects%20and%20Schottky%20Barrier%20Control%20inside%20ZnO%20Nanowires&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Haseman,%20Micah%20S.&rft.date=2023-06-28&rft.volume=15&rft.issue=25&rft.spage=30944&rft.epage=30955&rft.pages=30944-30955&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c02132&rft_dat=%3Cproquest_cross%3E2825810457%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-5833f2edc9d95d552cf6e5266cb977e8be7cd0173d89779a76b583743cc8ae23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2825810457&rft_id=info:pmid/37311023&rfr_iscdi=true