Loading…

Material removal model for chemical–mechanical polishing considering wafer flexibility and edge effects

This paper describes a two-dimensional, multiscale, material removal model for chemical–mechanical planarization that includes: (i) asperity deformation; (ii) bulk pad deformation; (iii) wafer compliance; (iv) carrier film deformation; (v) slurry flow; (vi) material removal by abrasive particles in...

Full description

Saved in:
Bibliographic Details
Published in:Wear 2004-09, Vol.257 (5), p.496-508
Main Authors: Seok, Jongwon, Sukam, Cyriaque P., Kim, Andrew T., Tichy, John A., Cale, Timothy S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-52d791d1c00e684ee6c2edac737ace9f039ca3f113519a910688925c74e7c0963
cites cdi_FETCH-LOGICAL-c329t-52d791d1c00e684ee6c2edac737ace9f039ca3f113519a910688925c74e7c0963
container_end_page 508
container_issue 5
container_start_page 496
container_title Wear
container_volume 257
creator Seok, Jongwon
Sukam, Cyriaque P.
Kim, Andrew T.
Tichy, John A.
Cale, Timothy S.
description This paper describes a two-dimensional, multiscale, material removal model for chemical–mechanical planarization that includes: (i) asperity deformation; (ii) bulk pad deformation; (iii) wafer compliance; (iv) carrier film deformation; (v) slurry flow; (vi) material removal by abrasive particles in the slurry. A finite element method is used to establish the relationship between the contact stress and the deformation of an idealized asperity made of a hyperelastic material. The total local stress due to the multitude of asperities is computed using the Greenwood–Williamson approach. The wafer deformation, bulk pad deformation, and slurry film thickness are then evaluated from the estimated contact stresses and hydrodynamic fluid pressures. The material removal rate on the wafer is computed as a function of position on the wafer. The wafer scale material removal rate results show large changes in rate near the wafer’s edges, as often seen in practice, with very uniform removal across most of the wafer surface. The computational algorithm used to calculate the contact stresses, slurry fluid pressures, material removal rates, and the global force and moment balances is summarized.
doi_str_mv 10.1016/j.wear.2004.01.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28269383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043164804000171</els_id><sourcerecordid>28269383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-52d791d1c00e684ee6c2edac737ace9f039ca3f113519a910688925c74e7c0963</originalsourceid><addsrcrecordid>eNp9UMtqHDEQFMGGbGz_QE46-TZrtbTzEOQSljgJOOQSn4Xcanm1aEZradaPm_8hf5gvsZbN2VBQ3XRVQxVjn0EsQUB3tV0-kc1LKcRqKaACPrAFDL1qZNv3J2xRD6qBbjV8ZJ9K2QohQLfdgoVfdqYcbOSZxvRYeUyOIvcpc9zQGNDGf69_R8KNnQ4L36UYyiZM9xzTVIKr7jo_WU-Z-0jP4S7EML9wOzlO7p44eU84l3N26m0sdPGfz9jt9bc_6x_Nze_vP9dfbxpUUs9NK12vwQEKQd2wIupQkrPYq94iaS-URqs8gGpBWw2iGwYtW-xX1KPQnTpjl8e_u5we9lRmM4aCFKOdKO2LkYPstBpUFcqjEHMqJZM3uxxGm18MCHNo1WzNoVVzaNUIqIBq-nI0UY3wGCibgoEmJBdyTWlcCu_Z3wCaeoNX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28269383</pqid></control><display><type>article</type><title>Material removal model for chemical–mechanical polishing considering wafer flexibility and edge effects</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Seok, Jongwon ; Sukam, Cyriaque P. ; Kim, Andrew T. ; Tichy, John A. ; Cale, Timothy S.</creator><creatorcontrib>Seok, Jongwon ; Sukam, Cyriaque P. ; Kim, Andrew T. ; Tichy, John A. ; Cale, Timothy S.</creatorcontrib><description>This paper describes a two-dimensional, multiscale, material removal model for chemical–mechanical planarization that includes: (i) asperity deformation; (ii) bulk pad deformation; (iii) wafer compliance; (iv) carrier film deformation; (v) slurry flow; (vi) material removal by abrasive particles in the slurry. A finite element method is used to establish the relationship between the contact stress and the deformation of an idealized asperity made of a hyperelastic material. The total local stress due to the multitude of asperities is computed using the Greenwood–Williamson approach. The wafer deformation, bulk pad deformation, and slurry film thickness are then evaluated from the estimated contact stresses and hydrodynamic fluid pressures. The material removal rate on the wafer is computed as a function of position on the wafer. The wafer scale material removal rate results show large changes in rate near the wafer’s edges, as often seen in practice, with very uniform removal across most of the wafer surface. The computational algorithm used to calculate the contact stresses, slurry fluid pressures, material removal rates, and the global force and moment balances is summarized.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2004.01.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>CMP ; Edge effects ; Material removal rate ; Wafer flexibility</subject><ispartof>Wear, 2004-09, Vol.257 (5), p.496-508</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-52d791d1c00e684ee6c2edac737ace9f039ca3f113519a910688925c74e7c0963</citedby><cites>FETCH-LOGICAL-c329t-52d791d1c00e684ee6c2edac737ace9f039ca3f113519a910688925c74e7c0963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Seok, Jongwon</creatorcontrib><creatorcontrib>Sukam, Cyriaque P.</creatorcontrib><creatorcontrib>Kim, Andrew T.</creatorcontrib><creatorcontrib>Tichy, John A.</creatorcontrib><creatorcontrib>Cale, Timothy S.</creatorcontrib><title>Material removal model for chemical–mechanical polishing considering wafer flexibility and edge effects</title><title>Wear</title><description>This paper describes a two-dimensional, multiscale, material removal model for chemical–mechanical planarization that includes: (i) asperity deformation; (ii) bulk pad deformation; (iii) wafer compliance; (iv) carrier film deformation; (v) slurry flow; (vi) material removal by abrasive particles in the slurry. A finite element method is used to establish the relationship between the contact stress and the deformation of an idealized asperity made of a hyperelastic material. The total local stress due to the multitude of asperities is computed using the Greenwood–Williamson approach. The wafer deformation, bulk pad deformation, and slurry film thickness are then evaluated from the estimated contact stresses and hydrodynamic fluid pressures. The material removal rate on the wafer is computed as a function of position on the wafer. The wafer scale material removal rate results show large changes in rate near the wafer’s edges, as often seen in practice, with very uniform removal across most of the wafer surface. The computational algorithm used to calculate the contact stresses, slurry fluid pressures, material removal rates, and the global force and moment balances is summarized.</description><subject>CMP</subject><subject>Edge effects</subject><subject>Material removal rate</subject><subject>Wafer flexibility</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqHDEQFMGGbGz_QE46-TZrtbTzEOQSljgJOOQSn4Xcanm1aEZradaPm_8hf5gvsZbN2VBQ3XRVQxVjn0EsQUB3tV0-kc1LKcRqKaACPrAFDL1qZNv3J2xRD6qBbjV8ZJ9K2QohQLfdgoVfdqYcbOSZxvRYeUyOIvcpc9zQGNDGf69_R8KNnQ4L36UYyiZM9xzTVIKr7jo_WU-Z-0jP4S7EML9wOzlO7p44eU84l3N26m0sdPGfz9jt9bc_6x_Nze_vP9dfbxpUUs9NK12vwQEKQd2wIupQkrPYq94iaS-URqs8gGpBWw2iGwYtW-xX1KPQnTpjl8e_u5we9lRmM4aCFKOdKO2LkYPstBpUFcqjEHMqJZM3uxxGm18MCHNo1WzNoVVzaNUIqIBq-nI0UY3wGCibgoEmJBdyTWlcCu_Z3wCaeoNX</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Seok, Jongwon</creator><creator>Sukam, Cyriaque P.</creator><creator>Kim, Andrew T.</creator><creator>Tichy, John A.</creator><creator>Cale, Timothy S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20040901</creationdate><title>Material removal model for chemical–mechanical polishing considering wafer flexibility and edge effects</title><author>Seok, Jongwon ; Sukam, Cyriaque P. ; Kim, Andrew T. ; Tichy, John A. ; Cale, Timothy S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-52d791d1c00e684ee6c2edac737ace9f039ca3f113519a910688925c74e7c0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>CMP</topic><topic>Edge effects</topic><topic>Material removal rate</topic><topic>Wafer flexibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seok, Jongwon</creatorcontrib><creatorcontrib>Sukam, Cyriaque P.</creatorcontrib><creatorcontrib>Kim, Andrew T.</creatorcontrib><creatorcontrib>Tichy, John A.</creatorcontrib><creatorcontrib>Cale, Timothy S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seok, Jongwon</au><au>Sukam, Cyriaque P.</au><au>Kim, Andrew T.</au><au>Tichy, John A.</au><au>Cale, Timothy S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Material removal model for chemical–mechanical polishing considering wafer flexibility and edge effects</atitle><jtitle>Wear</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>257</volume><issue>5</issue><spage>496</spage><epage>508</epage><pages>496-508</pages><issn>0043-1648</issn><eissn>1873-2577</eissn><abstract>This paper describes a two-dimensional, multiscale, material removal model for chemical–mechanical planarization that includes: (i) asperity deformation; (ii) bulk pad deformation; (iii) wafer compliance; (iv) carrier film deformation; (v) slurry flow; (vi) material removal by abrasive particles in the slurry. A finite element method is used to establish the relationship between the contact stress and the deformation of an idealized asperity made of a hyperelastic material. The total local stress due to the multitude of asperities is computed using the Greenwood–Williamson approach. The wafer deformation, bulk pad deformation, and slurry film thickness are then evaluated from the estimated contact stresses and hydrodynamic fluid pressures. The material removal rate on the wafer is computed as a function of position on the wafer. The wafer scale material removal rate results show large changes in rate near the wafer’s edges, as often seen in practice, with very uniform removal across most of the wafer surface. The computational algorithm used to calculate the contact stresses, slurry fluid pressures, material removal rates, and the global force and moment balances is summarized.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2004.01.011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1648
ispartof Wear, 2004-09, Vol.257 (5), p.496-508
issn 0043-1648
1873-2577
language eng
recordid cdi_proquest_miscellaneous_28269383
source ScienceDirect Freedom Collection 2022-2024
subjects CMP
Edge effects
Material removal rate
Wafer flexibility
title Material removal model for chemical–mechanical polishing considering wafer flexibility and edge effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Material%20removal%20model%20for%20chemical%E2%80%93mechanical%20polishing%20considering%20wafer%20flexibility%20and%20edge%20effects&rft.jtitle=Wear&rft.au=Seok,%20Jongwon&rft.date=2004-09-01&rft.volume=257&rft.issue=5&rft.spage=496&rft.epage=508&rft.pages=496-508&rft.issn=0043-1648&rft.eissn=1873-2577&rft_id=info:doi/10.1016/j.wear.2004.01.011&rft_dat=%3Cproquest_cross%3E28269383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-52d791d1c00e684ee6c2edac737ace9f039ca3f113519a910688925c74e7c0963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28269383&rft_id=info:pmid/&rfr_iscdi=true