Loading…
ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems
We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise in...
Saved in:
Published in: | IEEE transactions on signal processing 2004-02, Vol.52 (2), p.418-433 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3 |
container_end_page | 433 |
container_issue | 2 |
container_start_page | 418 |
container_title | IEEE transactions on signal processing |
container_volume | 52 |
creator | Neelamani, R. Hyeokho Choi Baraniuk, R. |
description | We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance. |
doi_str_mv | 10.1109/TSP.2003.821103 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28271615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1261329</ieee_id><sourcerecordid>2426500511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3</originalsourceid><addsrcrecordid>eNp9kc9LHTEQx5eiUH323IOXpWA97XvJ5McmvRX1qSBtaS3tLcTsrETyNprsKvrXm8cTBA-e5tdnhpn5VtVnSuaUEr24_PNrDoSwuYISsw_VDtWcNoS3cqv4RLBGqPb_x2o35xtCKOda7lQ_ljH9s7-Pv9XLOCWPqXmw9xhwrBNeT8Em_4Rd3aGLw30M0-jjUPcx1T6EpuQ6v84UIj_mEVd5r9rubcj46cXOqr_Lk8ujs-bi5-n50feLxnEgY9NTzZwjRIKE4gpiLQhVdkIBSvV9Z62UbasFVbrjPb-S0HUCpVZXLSXcsVl1uJl7m-LdhHk0K58dhmAHjFM2SkuqATQU8uu7JChoqaSigF_egDflI0O5wijFJBEaVIEWG8ilmHPC3twmv7Lp0VBi1jKYIoNZy2A2MpSOg5exNjsb-mQH5_Nrm-CUUVhz-xvOI-JrGSRloNkzGFiPHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883605928</pqid></control><display><type>article</type><title>ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems</title><source>IEEE Xplore (Online service)</source><creator>Neelamani, R. ; Hyeokho Choi ; Baraniuk, R.</creator><creatorcontrib>Neelamani, R. ; Hyeokho Choi ; Baraniuk, R.</creatorcontrib><description>We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2003.821103</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive white noise ; Applied sciences ; AWGN ; Cameras ; Colored noise ; Convolution ; Deconvolution ; Degradation ; Detection, estimation, filtering, equalization, prediction ; Economics ; Educational institutions ; Exact sciences and technology ; Fourier analysis ; Fourier transforms ; Gaussian noise ; Image processing ; Information, signal and communications theory ; Optimization ; Regularization ; Representations ; Shrinkage ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory ; Wavelet ; Wavelet domain</subject><ispartof>IEEE transactions on signal processing, 2004-02, Vol.52 (2), p.418-433</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3</citedby><cites>FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1261329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15413123$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neelamani, R.</creatorcontrib><creatorcontrib>Hyeokho Choi</creatorcontrib><creatorcontrib>Baraniuk, R.</creatorcontrib><title>ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.</description><subject>Additive white noise</subject><subject>Applied sciences</subject><subject>AWGN</subject><subject>Cameras</subject><subject>Colored noise</subject><subject>Convolution</subject><subject>Deconvolution</subject><subject>Degradation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Economics</subject><subject>Educational institutions</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gaussian noise</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Representations</subject><subject>Shrinkage</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Wavelet</subject><subject>Wavelet domain</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LHTEQx5eiUH323IOXpWA97XvJ5McmvRX1qSBtaS3tLcTsrETyNprsKvrXm8cTBA-e5tdnhpn5VtVnSuaUEr24_PNrDoSwuYISsw_VDtWcNoS3cqv4RLBGqPb_x2o35xtCKOda7lQ_ljH9s7-Pv9XLOCWPqXmw9xhwrBNeT8Em_4Rd3aGLw30M0-jjUPcx1T6EpuQ6v84UIj_mEVd5r9rubcj46cXOqr_Lk8ujs-bi5-n50feLxnEgY9NTzZwjRIKE4gpiLQhVdkIBSvV9Z62UbasFVbrjPb-S0HUCpVZXLSXcsVl1uJl7m-LdhHk0K58dhmAHjFM2SkuqATQU8uu7JChoqaSigF_egDflI0O5wijFJBEaVIEWG8ilmHPC3twmv7Lp0VBi1jKYIoNZy2A2MpSOg5exNjsb-mQH5_Nrm-CUUVhz-xvOI-JrGSRloNkzGFiPHA</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Neelamani, R.</creator><creator>Hyeokho Choi</creator><creator>Baraniuk, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040201</creationdate><title>ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems</title><author>Neelamani, R. ; Hyeokho Choi ; Baraniuk, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Additive white noise</topic><topic>Applied sciences</topic><topic>AWGN</topic><topic>Cameras</topic><topic>Colored noise</topic><topic>Convolution</topic><topic>Deconvolution</topic><topic>Degradation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Economics</topic><topic>Educational institutions</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gaussian noise</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Representations</topic><topic>Shrinkage</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Wavelet</topic><topic>Wavelet domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neelamani, R.</creatorcontrib><creatorcontrib>Hyeokho Choi</creatorcontrib><creatorcontrib>Baraniuk, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neelamani, R.</au><au>Hyeokho Choi</au><au>Baraniuk, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>52</volume><issue>2</issue><spage>418</spage><epage>433</epage><pages>418-433</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2003.821103</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2004-02, Vol.52 (2), p.418-433 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_28271615 |
source | IEEE Xplore (Online service) |
subjects | Additive white noise Applied sciences AWGN Cameras Colored noise Convolution Deconvolution Degradation Detection, estimation, filtering, equalization, prediction Economics Educational institutions Exact sciences and technology Fourier analysis Fourier transforms Gaussian noise Image processing Information, signal and communications theory Optimization Regularization Representations Shrinkage Signal and communications theory Signal processing Signal, noise Telecommunications and information theory Wavelet Wavelet domain |
title | ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ForWaRD:%20Fourier-wavelet%20regularized%20deconvolution%20for%20ill-conditioned%20systems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Neelamani,%20R.&rft.date=2004-02-01&rft.volume=52&rft.issue=2&rft.spage=418&rft.epage=433&rft.pages=418-433&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2003.821103&rft_dat=%3Cproquest_pasca%3E2426500511%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883605928&rft_id=info:pmid/&rft_ieee_id=1261329&rfr_iscdi=true |