Loading…

ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems

We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2004-02, Vol.52 (2), p.418-433
Main Authors: Neelamani, R., Hyeokho Choi, Baraniuk, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3
cites cdi_FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3
container_end_page 433
container_issue 2
container_start_page 418
container_title IEEE transactions on signal processing
container_volume 52
creator Neelamani, R.
Hyeokho Choi
Baraniuk, R.
description We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.
doi_str_mv 10.1109/TSP.2003.821103
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28271615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1261329</ieee_id><sourcerecordid>2426500511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3</originalsourceid><addsrcrecordid>eNp9kc9LHTEQx5eiUH323IOXpWA97XvJ5McmvRX1qSBtaS3tLcTsrETyNprsKvrXm8cTBA-e5tdnhpn5VtVnSuaUEr24_PNrDoSwuYISsw_VDtWcNoS3cqv4RLBGqPb_x2o35xtCKOda7lQ_ljH9s7-Pv9XLOCWPqXmw9xhwrBNeT8Em_4Rd3aGLw30M0-jjUPcx1T6EpuQ6v84UIj_mEVd5r9rubcj46cXOqr_Lk8ujs-bi5-n50feLxnEgY9NTzZwjRIKE4gpiLQhVdkIBSvV9Z62UbasFVbrjPb-S0HUCpVZXLSXcsVl1uJl7m-LdhHk0K58dhmAHjFM2SkuqATQU8uu7JChoqaSigF_egDflI0O5wijFJBEaVIEWG8ilmHPC3twmv7Lp0VBi1jKYIoNZy2A2MpSOg5exNjsb-mQH5_Nrm-CUUVhz-xvOI-JrGSRloNkzGFiPHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883605928</pqid></control><display><type>article</type><title>ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems</title><source>IEEE Xplore (Online service)</source><creator>Neelamani, R. ; Hyeokho Choi ; Baraniuk, R.</creator><creatorcontrib>Neelamani, R. ; Hyeokho Choi ; Baraniuk, R.</creatorcontrib><description>We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2003.821103</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive white noise ; Applied sciences ; AWGN ; Cameras ; Colored noise ; Convolution ; Deconvolution ; Degradation ; Detection, estimation, filtering, equalization, prediction ; Economics ; Educational institutions ; Exact sciences and technology ; Fourier analysis ; Fourier transforms ; Gaussian noise ; Image processing ; Information, signal and communications theory ; Optimization ; Regularization ; Representations ; Shrinkage ; Signal and communications theory ; Signal processing ; Signal, noise ; Telecommunications and information theory ; Wavelet ; Wavelet domain</subject><ispartof>IEEE transactions on signal processing, 2004-02, Vol.52 (2), p.418-433</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3</citedby><cites>FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1261329$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15413123$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Neelamani, R.</creatorcontrib><creatorcontrib>Hyeokho Choi</creatorcontrib><creatorcontrib>Baraniuk, R.</creatorcontrib><title>ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.</description><subject>Additive white noise</subject><subject>Applied sciences</subject><subject>AWGN</subject><subject>Cameras</subject><subject>Colored noise</subject><subject>Convolution</subject><subject>Deconvolution</subject><subject>Degradation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Economics</subject><subject>Educational institutions</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Gaussian noise</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Representations</subject><subject>Shrinkage</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Wavelet</subject><subject>Wavelet domain</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LHTEQx5eiUH323IOXpWA97XvJ5McmvRX1qSBtaS3tLcTsrETyNprsKvrXm8cTBA-e5tdnhpn5VtVnSuaUEr24_PNrDoSwuYISsw_VDtWcNoS3cqv4RLBGqPb_x2o35xtCKOda7lQ_ljH9s7-Pv9XLOCWPqXmw9xhwrBNeT8Em_4Rd3aGLw30M0-jjUPcx1T6EpuQ6v84UIj_mEVd5r9rubcj46cXOqr_Lk8ujs-bi5-n50feLxnEgY9NTzZwjRIKE4gpiLQhVdkIBSvV9Z62UbasFVbrjPb-S0HUCpVZXLSXcsVl1uJl7m-LdhHk0K58dhmAHjFM2SkuqATQU8uu7JChoqaSigF_egDflI0O5wijFJBEaVIEWG8ilmHPC3twmv7Lp0VBi1jKYIoNZy2A2MpSOg5exNjsb-mQH5_Nrm-CUUVhz-xvOI-JrGSRloNkzGFiPHA</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Neelamani, R.</creator><creator>Hyeokho Choi</creator><creator>Baraniuk, R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040201</creationdate><title>ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems</title><author>Neelamani, R. ; Hyeokho Choi ; Baraniuk, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Additive white noise</topic><topic>Applied sciences</topic><topic>AWGN</topic><topic>Cameras</topic><topic>Colored noise</topic><topic>Convolution</topic><topic>Deconvolution</topic><topic>Degradation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Economics</topic><topic>Educational institutions</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Gaussian noise</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Representations</topic><topic>Shrinkage</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Wavelet</topic><topic>Wavelet domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neelamani, R.</creatorcontrib><creatorcontrib>Hyeokho Choi</creatorcontrib><creatorcontrib>Baraniuk, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neelamani, R.</au><au>Hyeokho Choi</au><au>Baraniuk, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2004-02-01</date><risdate>2004</risdate><volume>52</volume><issue>2</issue><spage>418</spage><epage>433</epage><pages>418-433</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We propose an efficient, hybrid Fourier-wavelet regularized deconvolution (ForWaRD) algorithm that performs noise regularization via scalar shrinkage in both the Fourier and wavelet domains. The Fourier shrinkage exploits the Fourier transform's economical representation of the colored noise inherent in deconvolution, whereas the wavelet shrinkage exploits the wavelet domain's economical representation of piecewise smooth signals and images. We derive the optimal balance between the amount of Fourier and wavelet regularization by optimizing an approximate mean-squared error (MSE) metric and find that signals with more economical wavelet representations require less Fourier shrinkage. ForWaRD is applicable to all ill-conditioned deconvolution problems, unlike the purely wavelet-based wavelet-vaguelette deconvolution (WVD); moreover, its estimate features minimal ringing, unlike the purely Fourier-based Wiener deconvolution. Even in problems for which the WVD was designed, we prove that ForWaRD's MSE decays with the optimal WVD rate as the number of samples increases. Further, we demonstrate that over a wide range of practical sample-lengths, ForWaRD improves on WVD's performance.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2003.821103</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2004-02, Vol.52 (2), p.418-433
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28271615
source IEEE Xplore (Online service)
subjects Additive white noise
Applied sciences
AWGN
Cameras
Colored noise
Convolution
Deconvolution
Degradation
Detection, estimation, filtering, equalization, prediction
Economics
Educational institutions
Exact sciences and technology
Fourier analysis
Fourier transforms
Gaussian noise
Image processing
Information, signal and communications theory
Optimization
Regularization
Representations
Shrinkage
Signal and communications theory
Signal processing
Signal, noise
Telecommunications and information theory
Wavelet
Wavelet domain
title ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ForWaRD:%20Fourier-wavelet%20regularized%20deconvolution%20for%20ill-conditioned%20systems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Neelamani,%20R.&rft.date=2004-02-01&rft.volume=52&rft.issue=2&rft.spage=418&rft.epage=433&rft.pages=418-433&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2003.821103&rft_dat=%3Cproquest_pasca%3E2426500511%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-f193cc00626219350aa258014e5288ffdaa667795189d4f4b62dd5e698b7104c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883605928&rft_id=info:pmid/&rft_ieee_id=1261329&rfr_iscdi=true