Loading…

Starch ester film properties: The role of the casting temperature and starch its molecular weight and amylose content

Oleic acid and 10-undecenoic acid were used to esterify corn, tapioca, potato and a waxy potato starch, with a maximum degree of substitution of 2.4 and 1.9 respectively. The thermal and mechanical properties were investigated as a function of the amylopectin content and Mw of starch, and by the fat...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2023-09, Vol.316, p.121043-121043, Article 121043
Main Authors: Boetje, Laura, Lan, Xiaohong, van Dijken, Jur, Woortman, Albert J.J., Popken, Thijs, Polhuis, Michael, Loos, Katja
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oleic acid and 10-undecenoic acid were used to esterify corn, tapioca, potato and a waxy potato starch, with a maximum degree of substitution of 2.4 and 1.9 respectively. The thermal and mechanical properties were investigated as a function of the amylopectin content and Mw of starch, and by the fatty acid type. All starch esters had an improved degradation temperature regardless of their botanical origin. While the Tg did increase with increasing amylopectin content and Mw, it decreased with increasing fatty acid chain length. Moreover, films with different optical appearances were obtained by varying the casting temperature. SEM and polarized light microscopy showed that films cast at 20 °C had porous open structures with internal stress, which was absent when cast at higher temperatures. Tensile test measurements revealed that films had a higher Young's modulus when containing starch with a higher Mw and amylopectin content. Besides that, starch oleate films were more ductile than starch 10-undecenoate films. In addition, all films were resistant to water at least up to one month, while some light-induced crosslinking took place. Finally, starch oleate films showed antibacterial properties against Escherichia coli, whereas native starch and starch 10-undecenoate did not.
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2023.121043