Loading…
An ellipsoidal particle-finite element method for hypervelocity impact simulation
A number of coupled particle–element and hybrid particle–element methods have been developed for the simulation of hypervelocity impact problems to avoid certain disadvantages associated with the use of pure continuum‐based or pure particle‐based methods. To date these methods have employed spherica...
Saved in:
Published in: | International journal for numerical methods in engineering 2004-02, Vol.59 (5), p.737-753 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A number of coupled particle–element and hybrid particle–element methods have been developed for the simulation of hypervelocity impact problems to avoid certain disadvantages associated with the use of pure continuum‐based or pure particle‐based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particle entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models. Copyright © 2003 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.903 |