Loading…

Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach

Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups. We retrospectively identified 7,425 patients who underwe...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of arthroplasty 2023-10, Vol.38 (10), p.1990-1997.e1
Main Authors: Lu, Yining, Salmons, Harold I., Mickley, John P., Bedard, Nicholas A., Taunton, Michael J., Wyles, Cody C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83
cites cdi_FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83
container_end_page 1997.e1
container_issue 10
container_start_page 1990
container_title The Journal of arthroplasty
container_volume 38
creator Lu, Yining
Salmons, Harold I.
Mickley, John P.
Bedard, Nicholas A.
Taunton, Michael J.
Wyles, Cody C.
description Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups. We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters. There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P < .05). An Extreme Gradient Boosting algorithm identified preoperative platelets < 200, hematocrit > 35 or < 20, increasing age, albumin < 3, international normalized ratio > 2, body mass index > 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen > 50 or < 30, creatinine > 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk. Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk. III.
doi_str_mv 10.1016/j.arth.2023.06.027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2827664730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0883540323006678</els_id><sourcerecordid>2827664730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83</originalsourceid><addsrcrecordid>eNp9Uclu2zAQJYoWjZv2B3ooeOxFChdtLnox3CUBHKTIciZIauTQlUWFpAL40_p3HdVpjjkNZ_jem-UR8pGznDNene1yHdJ9LpiQOatyJupXZMFLKbKmYNVrsmBNI7OyYPKEvItxxxjnZVm8JSeylpIXBV-QP9-gc4MbtnTdY7S67w_0EvRc6qae3kxmG_w0Rtr5QK9d_E1vUtDJdYhNzg_UDfQXvmBIkd4NLYStn-Wu4dHF-f_WJ93TczfSFU4b_NjrmA5f6Iqu_d64AVqkxWmEgARM9NBi1-f0Utt7BNEN6PBvztU4Bo_F9-RNp_sIH57iKbn78f12fZ5trn5erFebzMqySllhWl5CoaHpqpJXcrnUsjZaL600hnW6EKW1EoytS8GNtQK4xdN0AAyBtpGn5PNRF9s-TBCT2rtooe_1AH6KSjSirqqilgyh4gi1wccYoFNjcHsdDoozNVumdmq2TM2WKVYptAxJn570J7OH9pny3yMEfD0CALd8dBBUtHhuC60LYJNqvXtJ_y_BHq0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827664730</pqid></control><display><type>article</type><title>Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lu, Yining ; Salmons, Harold I. ; Mickley, John P. ; Bedard, Nicholas A. ; Taunton, Michael J. ; Wyles, Cody C.</creator><creatorcontrib>Lu, Yining ; Salmons, Harold I. ; Mickley, John P. ; Bedard, Nicholas A. ; Taunton, Michael J. ; Wyles, Cody C.</creatorcontrib><description>Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups. We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters. There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P &lt; .05). An Extreme Gradient Boosting algorithm identified preoperative platelets &lt; 200, hematocrit &gt; 35 or &lt; 20, increasing age, albumin &lt; 3, international normalized ratio &gt; 2, body mass index &gt; 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen &gt; 50 or &lt; 30, creatinine &gt; 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk. Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk. III.</description><identifier>ISSN: 0883-5403</identifier><identifier>EISSN: 1532-8406</identifier><identifier>DOI: 10.1016/j.arth.2023.06.027</identifier><identifier>PMID: 37331441</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adult reconstruction ; artificial intelligence ; complications ; outcomes ; predictive model ; preoperative</subject><ispartof>The Journal of arthroplasty, 2023-10, Vol.38 (10), p.1990-1997.e1</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83</citedby><cites>FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83</cites><orcidid>0000-0002-8629-7567 ; 0000-0001-5975-530X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37331441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yining</creatorcontrib><creatorcontrib>Salmons, Harold I.</creatorcontrib><creatorcontrib>Mickley, John P.</creatorcontrib><creatorcontrib>Bedard, Nicholas A.</creatorcontrib><creatorcontrib>Taunton, Michael J.</creatorcontrib><creatorcontrib>Wyles, Cody C.</creatorcontrib><title>Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach</title><title>The Journal of arthroplasty</title><addtitle>J Arthroplasty</addtitle><description>Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups. We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters. There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P &lt; .05). An Extreme Gradient Boosting algorithm identified preoperative platelets &lt; 200, hematocrit &gt; 35 or &lt; 20, increasing age, albumin &lt; 3, international normalized ratio &gt; 2, body mass index &gt; 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen &gt; 50 or &lt; 30, creatinine &gt; 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk. Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk. III.</description><subject>adult reconstruction</subject><subject>artificial intelligence</subject><subject>complications</subject><subject>outcomes</subject><subject>predictive model</subject><subject>preoperative</subject><issn>0883-5403</issn><issn>1532-8406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9Uclu2zAQJYoWjZv2B3ooeOxFChdtLnox3CUBHKTIciZIauTQlUWFpAL40_p3HdVpjjkNZ_jem-UR8pGznDNene1yHdJ9LpiQOatyJupXZMFLKbKmYNVrsmBNI7OyYPKEvItxxxjnZVm8JSeylpIXBV-QP9-gc4MbtnTdY7S67w_0EvRc6qae3kxmG_w0Rtr5QK9d_E1vUtDJdYhNzg_UDfQXvmBIkd4NLYStn-Wu4dHF-f_WJ93TczfSFU4b_NjrmA5f6Iqu_d64AVqkxWmEgARM9NBi1-f0Utt7BNEN6PBvztU4Bo_F9-RNp_sIH57iKbn78f12fZ5trn5erFebzMqySllhWl5CoaHpqpJXcrnUsjZaL600hnW6EKW1EoytS8GNtQK4xdN0AAyBtpGn5PNRF9s-TBCT2rtooe_1AH6KSjSirqqilgyh4gi1wccYoFNjcHsdDoozNVumdmq2TM2WKVYptAxJn570J7OH9pny3yMEfD0CALd8dBBUtHhuC60LYJNqvXtJ_y_BHq0w</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lu, Yining</creator><creator>Salmons, Harold I.</creator><creator>Mickley, John P.</creator><creator>Bedard, Nicholas A.</creator><creator>Taunton, Michael J.</creator><creator>Wyles, Cody C.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8629-7567</orcidid><orcidid>https://orcid.org/0000-0001-5975-530X</orcidid></search><sort><creationdate>20231001</creationdate><title>Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach</title><author>Lu, Yining ; Salmons, Harold I. ; Mickley, John P. ; Bedard, Nicholas A. ; Taunton, Michael J. ; Wyles, Cody C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adult reconstruction</topic><topic>artificial intelligence</topic><topic>complications</topic><topic>outcomes</topic><topic>predictive model</topic><topic>preoperative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yining</creatorcontrib><creatorcontrib>Salmons, Harold I.</creatorcontrib><creatorcontrib>Mickley, John P.</creatorcontrib><creatorcontrib>Bedard, Nicholas A.</creatorcontrib><creatorcontrib>Taunton, Michael J.</creatorcontrib><creatorcontrib>Wyles, Cody C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of arthroplasty</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yining</au><au>Salmons, Harold I.</au><au>Mickley, John P.</au><au>Bedard, Nicholas A.</au><au>Taunton, Michael J.</au><au>Wyles, Cody C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach</atitle><jtitle>The Journal of arthroplasty</jtitle><addtitle>J Arthroplasty</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>38</volume><issue>10</issue><spage>1990</spage><epage>1997.e1</epage><pages>1990-1997.e1</pages><issn>0883-5403</issn><eissn>1532-8406</eissn><abstract>Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups. We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters. There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P &lt; .05). An Extreme Gradient Boosting algorithm identified preoperative platelets &lt; 200, hematocrit &gt; 35 or &lt; 20, increasing age, albumin &lt; 3, international normalized ratio &gt; 2, body mass index &gt; 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen &gt; 50 or &lt; 30, creatinine &gt; 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk. Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk. III.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37331441</pmid><doi>10.1016/j.arth.2023.06.027</doi><orcidid>https://orcid.org/0000-0002-8629-7567</orcidid><orcidid>https://orcid.org/0000-0001-5975-530X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0883-5403
ispartof The Journal of arthroplasty, 2023-10, Vol.38 (10), p.1990-1997.e1
issn 0883-5403
1532-8406
language eng
recordid cdi_proquest_miscellaneous_2827664730
source ScienceDirect Freedom Collection 2022-2024
subjects adult reconstruction
artificial intelligence
complications
outcomes
predictive model
preoperative
title Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20Clinically%20Meaningful%20Subgroups%20for%20Risk%20Stratification%20in%20Patients%20Undergoing%20Revision%20Total%20Hip%20Arthroplasty:%20A%20Combined%20Unsupervised%20and%20Supervised%20Machine%20Learning%20Approach&rft.jtitle=The%20Journal%20of%20arthroplasty&rft.au=Lu,%20Yining&rft.date=2023-10-01&rft.volume=38&rft.issue=10&rft.spage=1990&rft.epage=1997.e1&rft.pages=1990-1997.e1&rft.issn=0883-5403&rft.eissn=1532-8406&rft_id=info:doi/10.1016/j.arth.2023.06.027&rft_dat=%3Cproquest_cross%3E2827664730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827664730&rft_id=info:pmid/37331441&rfr_iscdi=true