Loading…
Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach
Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups. We retrospectively identified 7,425 patients who underwe...
Saved in:
Published in: | The Journal of arthroplasty 2023-10, Vol.38 (10), p.1990-1997.e1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83 |
container_end_page | 1997.e1 |
container_issue | 10 |
container_start_page | 1990 |
container_title | The Journal of arthroplasty |
container_volume | 38 |
creator | Lu, Yining Salmons, Harold I. Mickley, John P. Bedard, Nicholas A. Taunton, Michael J. Wyles, Cody C. |
description | Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups.
We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters.
There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P < .05). An Extreme Gradient Boosting algorithm identified preoperative platelets < 200, hematocrit > 35 or < 20, increasing age, albumin < 3, international normalized ratio > 2, body mass index > 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen > 50 or < 30, creatinine > 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk.
Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk.
III. |
doi_str_mv | 10.1016/j.arth.2023.06.027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2827664730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0883540323006678</els_id><sourcerecordid>2827664730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83</originalsourceid><addsrcrecordid>eNp9Uclu2zAQJYoWjZv2B3ooeOxFChdtLnox3CUBHKTIciZIauTQlUWFpAL40_p3HdVpjjkNZ_jem-UR8pGznDNene1yHdJ9LpiQOatyJupXZMFLKbKmYNVrsmBNI7OyYPKEvItxxxjnZVm8JSeylpIXBV-QP9-gc4MbtnTdY7S67w_0EvRc6qae3kxmG_w0Rtr5QK9d_E1vUtDJdYhNzg_UDfQXvmBIkd4NLYStn-Wu4dHF-f_WJ93TczfSFU4b_NjrmA5f6Iqu_d64AVqkxWmEgARM9NBi1-f0Utt7BNEN6PBvztU4Bo_F9-RNp_sIH57iKbn78f12fZ5trn5erFebzMqySllhWl5CoaHpqpJXcrnUsjZaL600hnW6EKW1EoytS8GNtQK4xdN0AAyBtpGn5PNRF9s-TBCT2rtooe_1AH6KSjSirqqilgyh4gi1wccYoFNjcHsdDoozNVumdmq2TM2WKVYptAxJn570J7OH9pny3yMEfD0CALd8dBBUtHhuC60LYJNqvXtJ_y_BHq0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827664730</pqid></control><display><type>article</type><title>Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lu, Yining ; Salmons, Harold I. ; Mickley, John P. ; Bedard, Nicholas A. ; Taunton, Michael J. ; Wyles, Cody C.</creator><creatorcontrib>Lu, Yining ; Salmons, Harold I. ; Mickley, John P. ; Bedard, Nicholas A. ; Taunton, Michael J. ; Wyles, Cody C.</creatorcontrib><description>Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups.
We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters.
There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P < .05). An Extreme Gradient Boosting algorithm identified preoperative platelets < 200, hematocrit > 35 or < 20, increasing age, albumin < 3, international normalized ratio > 2, body mass index > 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen > 50 or < 30, creatinine > 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk.
Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk.
III.</description><identifier>ISSN: 0883-5403</identifier><identifier>EISSN: 1532-8406</identifier><identifier>DOI: 10.1016/j.arth.2023.06.027</identifier><identifier>PMID: 37331441</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adult reconstruction ; artificial intelligence ; complications ; outcomes ; predictive model ; preoperative</subject><ispartof>The Journal of arthroplasty, 2023-10, Vol.38 (10), p.1990-1997.e1</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83</citedby><cites>FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83</cites><orcidid>0000-0002-8629-7567 ; 0000-0001-5975-530X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37331441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yining</creatorcontrib><creatorcontrib>Salmons, Harold I.</creatorcontrib><creatorcontrib>Mickley, John P.</creatorcontrib><creatorcontrib>Bedard, Nicholas A.</creatorcontrib><creatorcontrib>Taunton, Michael J.</creatorcontrib><creatorcontrib>Wyles, Cody C.</creatorcontrib><title>Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach</title><title>The Journal of arthroplasty</title><addtitle>J Arthroplasty</addtitle><description>Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups.
We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters.
There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P < .05). An Extreme Gradient Boosting algorithm identified preoperative platelets < 200, hematocrit > 35 or < 20, increasing age, albumin < 3, international normalized ratio > 2, body mass index > 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen > 50 or < 30, creatinine > 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk.
Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk.
III.</description><subject>adult reconstruction</subject><subject>artificial intelligence</subject><subject>complications</subject><subject>outcomes</subject><subject>predictive model</subject><subject>preoperative</subject><issn>0883-5403</issn><issn>1532-8406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9Uclu2zAQJYoWjZv2B3ooeOxFChdtLnox3CUBHKTIciZIauTQlUWFpAL40_p3HdVpjjkNZ_jem-UR8pGznDNene1yHdJ9LpiQOatyJupXZMFLKbKmYNVrsmBNI7OyYPKEvItxxxjnZVm8JSeylpIXBV-QP9-gc4MbtnTdY7S67w_0EvRc6qae3kxmG_w0Rtr5QK9d_E1vUtDJdYhNzg_UDfQXvmBIkd4NLYStn-Wu4dHF-f_WJ93TczfSFU4b_NjrmA5f6Iqu_d64AVqkxWmEgARM9NBi1-f0Utt7BNEN6PBvztU4Bo_F9-RNp_sIH57iKbn78f12fZ5trn5erFebzMqySllhWl5CoaHpqpJXcrnUsjZaL600hnW6EKW1EoytS8GNtQK4xdN0AAyBtpGn5PNRF9s-TBCT2rtooe_1AH6KSjSirqqilgyh4gi1wccYoFNjcHsdDoozNVumdmq2TM2WKVYptAxJn570J7OH9pny3yMEfD0CALd8dBBUtHhuC60LYJNqvXtJ_y_BHq0w</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Lu, Yining</creator><creator>Salmons, Harold I.</creator><creator>Mickley, John P.</creator><creator>Bedard, Nicholas A.</creator><creator>Taunton, Michael J.</creator><creator>Wyles, Cody C.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8629-7567</orcidid><orcidid>https://orcid.org/0000-0001-5975-530X</orcidid></search><sort><creationdate>20231001</creationdate><title>Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach</title><author>Lu, Yining ; Salmons, Harold I. ; Mickley, John P. ; Bedard, Nicholas A. ; Taunton, Michael J. ; Wyles, Cody C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>adult reconstruction</topic><topic>artificial intelligence</topic><topic>complications</topic><topic>outcomes</topic><topic>predictive model</topic><topic>preoperative</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yining</creatorcontrib><creatorcontrib>Salmons, Harold I.</creatorcontrib><creatorcontrib>Mickley, John P.</creatorcontrib><creatorcontrib>Bedard, Nicholas A.</creatorcontrib><creatorcontrib>Taunton, Michael J.</creatorcontrib><creatorcontrib>Wyles, Cody C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of arthroplasty</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yining</au><au>Salmons, Harold I.</au><au>Mickley, John P.</au><au>Bedard, Nicholas A.</au><au>Taunton, Michael J.</au><au>Wyles, Cody C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach</atitle><jtitle>The Journal of arthroplasty</jtitle><addtitle>J Arthroplasty</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>38</volume><issue>10</issue><spage>1990</spage><epage>1997.e1</epage><pages>1990-1997.e1</pages><issn>0883-5403</issn><eissn>1532-8406</eissn><abstract>Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups.
We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters.
There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P < .05). An Extreme Gradient Boosting algorithm identified preoperative platelets < 200, hematocrit > 35 or < 20, increasing age, albumin < 3, international normalized ratio > 2, body mass index > 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen > 50 or < 30, creatinine > 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk.
Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk.
III.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37331441</pmid><doi>10.1016/j.arth.2023.06.027</doi><orcidid>https://orcid.org/0000-0002-8629-7567</orcidid><orcidid>https://orcid.org/0000-0001-5975-530X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-5403 |
ispartof | The Journal of arthroplasty, 2023-10, Vol.38 (10), p.1990-1997.e1 |
issn | 0883-5403 1532-8406 |
language | eng |
recordid | cdi_proquest_miscellaneous_2827664730 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | adult reconstruction artificial intelligence complications outcomes predictive model preoperative |
title | Defining Clinically Meaningful Subgroups for Risk Stratification in Patients Undergoing Revision Total Hip Arthroplasty: A Combined Unsupervised and Supervised Machine Learning Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20Clinically%20Meaningful%20Subgroups%20for%20Risk%20Stratification%20in%20Patients%20Undergoing%20Revision%20Total%20Hip%20Arthroplasty:%20A%20Combined%20Unsupervised%20and%20Supervised%20Machine%20Learning%20Approach&rft.jtitle=The%20Journal%20of%20arthroplasty&rft.au=Lu,%20Yining&rft.date=2023-10-01&rft.volume=38&rft.issue=10&rft.spage=1990&rft.epage=1997.e1&rft.pages=1990-1997.e1&rft.issn=0883-5403&rft.eissn=1532-8406&rft_id=info:doi/10.1016/j.arth.2023.06.027&rft_dat=%3Cproquest_cross%3E2827664730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-4bd15e4ae8f6516399a37baa9c3bb0fa425cc3ebc7521bcc2e1c144fee0a37c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827664730&rft_id=info:pmid/37331441&rfr_iscdi=true |