Loading…

In situ imaging of signaling molecule carbon monoxide in plants with a fluorescent probe

Abstract Carbon monoxide (CO) is a recently discovered gasotransmitter. In animals, it has been found that endogenously produced CO participates in the regulation of various metabolic processes. Recent research has indicated that CO, acting as a signaling molecule, plays a crucial regulatory role in...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2023-09, Vol.193 (2), p.1597-1604
Main Authors: Cao, Yuyao, Xu, Yinxiang, Fang, Ning, Jiao, Qingcai, Zhu, Hai-liang, Li, Zhen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Carbon monoxide (CO) is a recently discovered gasotransmitter. In animals, it has been found that endogenously produced CO participates in the regulation of various metabolic processes. Recent research has indicated that CO, acting as a signaling molecule, plays a crucial regulatory role in plant development and their response to abiotic stress. In this work, we developed a fluorescent probe, named COP (carbonic oxide Probe), for the in situ imaging of CO in Arabidopsis thaliana plant tissues. The probe was designed by combining malononitrile-naphthalene as the fluorophore and a typical palladium-mediated reaction mechanism. When reacted with the released CO, COP showed an obvious fluorescence enhancement at 575 nm, which could be observed in naked-eye conditions. With a linear range of 0–10 μM, the limit of detection of COP was determined as 0.38 μM. The detection system based on COP indicated several advantages including relatively rapid response within 20 min, steadiness in a wide pH range of 5.0–10.0, high selectivity, and applicative anti-interference. Moreover, with a penetration depth of 30 μm, COP enabled 3D imaging of CO dynamics in plant samples, whether it was caused by agent release, heavy metal stress, or inner oxidation. This work provides a fluorescent probe for monitoring CO levels in plant samples, and it expands the application field of CO-detection technology, assisting researchers in understanding the dynamic changes in plant physiological processes, making it an important tool for studying plant physiology and biological processes. A fluorescent probe called for imaging carbon monoxide in plants exhibits high selectivity and enables rapid 3D detection of carbon monoxide.
ISSN:0032-0889
1532-2548
DOI:10.1093/plphys/kiad354