Loading…
A framework for assessing selection and misclassification bias in mendelian randomisation studies: an illustrative example between body mass index and covid-19
Mendelian randomisation (MR) studies, which investigate causal effects of exposures on disease, might be biased by sample selection and misclassification if phenotypes are not measured universally with the same definition in all study populations or participants. For example, in MR analyses of effec...
Saved in:
Published in: | BMJ (Online) 2023-06, Vol.381, p.e072148 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b402t-3bfcb466db948a29dc71342ebffa97d2492867fafdce9462da66bd8950c0f8173 |
---|---|
cites | cdi_FETCH-LOGICAL-b402t-3bfcb466db948a29dc71342ebffa97d2492867fafdce9462da66bd8950c0f8173 |
container_end_page | |
container_issue | |
container_start_page | e072148 |
container_title | BMJ (Online) |
container_volume | 381 |
creator | Clayton, Gemma L Gonçalves, Ana Soares Goulding, Neil Borges, Maria Carolina Holmes, Michael V Davey, George Smith Tilling, Kate Lawlor, Deborah A Carter, Alice R |
description | Mendelian randomisation (MR) studies, which investigate causal effects of exposures on disease, might be biased by sample selection and misclassification if phenotypes are not measured universally with the same definition in all study populations or participants. For example, in MR analyses of effects of exposures on covid-19, studies might include individuals with specific characteristics (eg, high socioeconomic position) meaning they are more likely to be tested for SARS-CoV-2 infection or respond to study questionnaires collecting data on infection and disease (selection bias). Alternatively, studies might assume those who were not tested have not been infected by SARS-CoV-2 or had covid-19 and are included as control participants (misclassification bias). In this article, a set of analyses to investigate the presence of selection or misclassification bias in MR studies is proposed and the implications of these on results is considered. The effect of body mass index on covid-19 susceptibility and severity is used as an illustrative example. |
doi_str_mv | 10.1136/bmj-2022-072148 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2827922882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827922882</sourcerecordid><originalsourceid>FETCH-LOGICAL-b402t-3bfcb466db948a29dc71342ebffa97d2492867fafdce9462da66bd8950c0f8173</originalsourceid><addsrcrecordid>eNp1kctrFTEYxYMottSu3UnAjSBj85ibh7tSqhUKbnQ95PFFcs1MrslMH39N_1Vz79QigquEnN853xcOQq8p-UApF2d23HaMMNYRyWivnqFjKjeio4rz53_dj9BprVtCCONSabF5iY645FxsBD1GD-c4FDPCbS4_ccgFm1qh1jj9wBUSuDnmCZvJ4zFWl5oYQ3Tm8GqjqThOeITJQ4pmwqWBuYGrXufFR6gfmx3HlJY6lybcAIY7M-4SYAvzLUALyv4ejy27pXm4O4xz-Sb6jupX6EUwqcLp43mCvn-6_HZx1V1__fzl4vy6sz1hc8dtcLYXwlvdK8O0d5LynoENwWjpWa-ZEjKY4B3oXjBvhLBe6Q1xJCgq-Ql6t-buSv61QJ2H_YchJTNBXurAFJOaMaVYQ9_-g27zUqa23YFiVAreN-pspVzJtRYIw67E0ZT7gZJhX9_Q6hv29Q1rfc3x5jF3sSP4J_5PWQ14vwJ759PM_8X9BkJkpkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827217634</pqid></control><display><type>article</type><title>A framework for assessing selection and misclassification bias in mendelian randomisation studies: an illustrative example between body mass index and covid-19</title><source>BMJ Publishing</source><creator>Clayton, Gemma L ; Gonçalves, Ana ; Soares ; Goulding, Neil ; Borges, Maria Carolina ; Holmes, Michael V ; Davey, George ; Smith ; Tilling, Kate ; Lawlor, Deborah A ; Carter, Alice R</creator><creatorcontrib>Clayton, Gemma L ; Gonçalves, Ana ; Soares ; Goulding, Neil ; Borges, Maria Carolina ; Holmes, Michael V ; Davey, George ; Smith ; Tilling, Kate ; Lawlor, Deborah A ; Carter, Alice R</creatorcontrib><description>Mendelian randomisation (MR) studies, which investigate causal effects of exposures on disease, might be biased by sample selection and misclassification if phenotypes are not measured universally with the same definition in all study populations or participants. For example, in MR analyses of effects of exposures on covid-19, studies might include individuals with specific characteristics (eg, high socioeconomic position) meaning they are more likely to be tested for SARS-CoV-2 infection or respond to study questionnaires collecting data on infection and disease (selection bias). Alternatively, studies might assume those who were not tested have not been infected by SARS-CoV-2 or had covid-19 and are included as control participants (misclassification bias). In this article, a set of analyses to investigate the presence of selection or misclassification bias in MR studies is proposed and the implications of these on results is considered. The effect of body mass index on covid-19 susceptibility and severity is used as an illustrative example.</description><identifier>ISSN: 1756-1833</identifier><identifier>EISSN: 1756-1833</identifier><identifier>DOI: 10.1136/bmj-2022-072148</identifier><identifier>PMID: 37336561</identifier><language>eng</language><publisher>England: British Medical Journal Publishing Group</publisher><subject>Bias ; Body Mass Index ; COVID-19 ; Genomes ; Humans ; Infections ; Laboratories ; Mendelian Randomization Analysis ; Missing data ; Phenotypes ; Population studies ; Questionnaires ; Research Methods & Reporting ; Risk Factors ; Serology ; Severe acute respiratory syndrome coronavirus 2 ; Ventilation</subject><ispartof>BMJ (Online), 2023-06, Vol.381, p.e072148</ispartof><rights>Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2023 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b402t-3bfcb466db948a29dc71342ebffa97d2492867fafdce9462da66bd8950c0f8173</citedby><cites>FETCH-LOGICAL-b402t-3bfcb466db948a29dc71342ebffa97d2492867fafdce9462da66bd8950c0f8173</cites><orcidid>0000-0002-9525-2758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bmj.com/content/381/bmj-2022-072148.full.pdf$$EPDF$$P50$$Gbmj$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://bmj.com/content/381/bmj-2022-072148.full$$EHTML$$P50$$Gbmj$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3181,27901,27902,55316,77339,77340</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37336561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clayton, Gemma L</creatorcontrib><creatorcontrib>Gonçalves, Ana</creatorcontrib><creatorcontrib>Soares</creatorcontrib><creatorcontrib>Goulding, Neil</creatorcontrib><creatorcontrib>Borges, Maria Carolina</creatorcontrib><creatorcontrib>Holmes, Michael V</creatorcontrib><creatorcontrib>Davey, George</creatorcontrib><creatorcontrib>Smith</creatorcontrib><creatorcontrib>Tilling, Kate</creatorcontrib><creatorcontrib>Lawlor, Deborah A</creatorcontrib><creatorcontrib>Carter, Alice R</creatorcontrib><title>A framework for assessing selection and misclassification bias in mendelian randomisation studies: an illustrative example between body mass index and covid-19</title><title>BMJ (Online)</title><addtitle>BMJ</addtitle><addtitle>BMJ</addtitle><description>Mendelian randomisation (MR) studies, which investigate causal effects of exposures on disease, might be biased by sample selection and misclassification if phenotypes are not measured universally with the same definition in all study populations or participants. For example, in MR analyses of effects of exposures on covid-19, studies might include individuals with specific characteristics (eg, high socioeconomic position) meaning they are more likely to be tested for SARS-CoV-2 infection or respond to study questionnaires collecting data on infection and disease (selection bias). Alternatively, studies might assume those who were not tested have not been infected by SARS-CoV-2 or had covid-19 and are included as control participants (misclassification bias). In this article, a set of analyses to investigate the presence of selection or misclassification bias in MR studies is proposed and the implications of these on results is considered. The effect of body mass index on covid-19 susceptibility and severity is used as an illustrative example.</description><subject>Bias</subject><subject>Body Mass Index</subject><subject>COVID-19</subject><subject>Genomes</subject><subject>Humans</subject><subject>Infections</subject><subject>Laboratories</subject><subject>Mendelian Randomization Analysis</subject><subject>Missing data</subject><subject>Phenotypes</subject><subject>Population studies</subject><subject>Questionnaires</subject><subject>Research Methods & Reporting</subject><subject>Risk Factors</subject><subject>Serology</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Ventilation</subject><issn>1756-1833</issn><issn>1756-1833</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><recordid>eNp1kctrFTEYxYMottSu3UnAjSBj85ibh7tSqhUKbnQ95PFFcs1MrslMH39N_1Vz79QigquEnN853xcOQq8p-UApF2d23HaMMNYRyWivnqFjKjeio4rz53_dj9BprVtCCONSabF5iY645FxsBD1GD-c4FDPCbS4_ccgFm1qh1jj9wBUSuDnmCZvJ4zFWl5oYQ3Tm8GqjqThOeITJQ4pmwqWBuYGrXufFR6gfmx3HlJY6lybcAIY7M-4SYAvzLUALyv4ejy27pXm4O4xz-Sb6jupX6EUwqcLp43mCvn-6_HZx1V1__fzl4vy6sz1hc8dtcLYXwlvdK8O0d5LynoENwWjpWa-ZEjKY4B3oXjBvhLBe6Q1xJCgq-Ql6t-buSv61QJ2H_YchJTNBXurAFJOaMaVYQ9_-g27zUqa23YFiVAreN-pspVzJtRYIw67E0ZT7gZJhX9_Q6hv29Q1rfc3x5jF3sSP4J_5PWQ14vwJ759PM_8X9BkJkpkY</recordid><startdate>20230619</startdate><enddate>20230619</enddate><creator>Clayton, Gemma L</creator><creator>Gonçalves, Ana</creator><creator>Soares</creator><creator>Goulding, Neil</creator><creator>Borges, Maria Carolina</creator><creator>Holmes, Michael V</creator><creator>Davey, George</creator><creator>Smith</creator><creator>Tilling, Kate</creator><creator>Lawlor, Deborah A</creator><creator>Carter, Alice R</creator><general>British Medical Journal Publishing Group</general><general>BMJ Publishing Group LTD</general><scope>9YT</scope><scope>ACMMV</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9525-2758</orcidid></search><sort><creationdate>20230619</creationdate><title>A framework for assessing selection and misclassification bias in mendelian randomisation studies: an illustrative example between body mass index and covid-19</title><author>Clayton, Gemma L ; Gonçalves, Ana ; Soares ; Goulding, Neil ; Borges, Maria Carolina ; Holmes, Michael V ; Davey, George ; Smith ; Tilling, Kate ; Lawlor, Deborah A ; Carter, Alice R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b402t-3bfcb466db948a29dc71342ebffa97d2492867fafdce9462da66bd8950c0f8173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bias</topic><topic>Body Mass Index</topic><topic>COVID-19</topic><topic>Genomes</topic><topic>Humans</topic><topic>Infections</topic><topic>Laboratories</topic><topic>Mendelian Randomization Analysis</topic><topic>Missing data</topic><topic>Phenotypes</topic><topic>Population studies</topic><topic>Questionnaires</topic><topic>Research Methods & Reporting</topic><topic>Risk Factors</topic><topic>Serology</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clayton, Gemma L</creatorcontrib><creatorcontrib>Gonçalves, Ana</creatorcontrib><creatorcontrib>Soares</creatorcontrib><creatorcontrib>Goulding, Neil</creatorcontrib><creatorcontrib>Borges, Maria Carolina</creatorcontrib><creatorcontrib>Holmes, Michael V</creatorcontrib><creatorcontrib>Davey, George</creatorcontrib><creatorcontrib>Smith</creatorcontrib><creatorcontrib>Tilling, Kate</creatorcontrib><creatorcontrib>Lawlor, Deborah A</creatorcontrib><creatorcontrib>Carter, Alice R</creatorcontrib><collection>BMJ Journals</collection><collection>BMJ Journals:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>BMJ (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clayton, Gemma L</au><au>Gonçalves, Ana</au><au>Soares</au><au>Goulding, Neil</au><au>Borges, Maria Carolina</au><au>Holmes, Michael V</au><au>Davey, George</au><au>Smith</au><au>Tilling, Kate</au><au>Lawlor, Deborah A</au><au>Carter, Alice R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for assessing selection and misclassification bias in mendelian randomisation studies: an illustrative example between body mass index and covid-19</atitle><jtitle>BMJ (Online)</jtitle><stitle>BMJ</stitle><addtitle>BMJ</addtitle><date>2023-06-19</date><risdate>2023</risdate><volume>381</volume><spage>e072148</spage><pages>e072148-</pages><issn>1756-1833</issn><eissn>1756-1833</eissn><abstract>Mendelian randomisation (MR) studies, which investigate causal effects of exposures on disease, might be biased by sample selection and misclassification if phenotypes are not measured universally with the same definition in all study populations or participants. For example, in MR analyses of effects of exposures on covid-19, studies might include individuals with specific characteristics (eg, high socioeconomic position) meaning they are more likely to be tested for SARS-CoV-2 infection or respond to study questionnaires collecting data on infection and disease (selection bias). Alternatively, studies might assume those who were not tested have not been infected by SARS-CoV-2 or had covid-19 and are included as control participants (misclassification bias). In this article, a set of analyses to investigate the presence of selection or misclassification bias in MR studies is proposed and the implications of these on results is considered. The effect of body mass index on covid-19 susceptibility and severity is used as an illustrative example.</abstract><cop>England</cop><pub>British Medical Journal Publishing Group</pub><pmid>37336561</pmid><doi>10.1136/bmj-2022-072148</doi><orcidid>https://orcid.org/0000-0002-9525-2758</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-1833 |
ispartof | BMJ (Online), 2023-06, Vol.381, p.e072148 |
issn | 1756-1833 1756-1833 |
language | eng |
recordid | cdi_proquest_miscellaneous_2827922882 |
source | BMJ Publishing |
subjects | Bias Body Mass Index COVID-19 Genomes Humans Infections Laboratories Mendelian Randomization Analysis Missing data Phenotypes Population studies Questionnaires Research Methods & Reporting Risk Factors Serology Severe acute respiratory syndrome coronavirus 2 Ventilation |
title | A framework for assessing selection and misclassification bias in mendelian randomisation studies: an illustrative example between body mass index and covid-19 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20assessing%20selection%20and%20misclassification%20bias%20in%20mendelian%20randomisation%20studies:%20an%20illustrative%20example%20between%20body%20mass%20index%20and%20covid-19&rft.jtitle=BMJ%20(Online)&rft.au=Clayton,%20Gemma%20L&rft.date=2023-06-19&rft.volume=381&rft.spage=e072148&rft.pages=e072148-&rft.issn=1756-1833&rft.eissn=1756-1833&rft_id=info:doi/10.1136/bmj-2022-072148&rft_dat=%3Cproquest_cross%3E2827922882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b402t-3bfcb466db948a29dc71342ebffa97d2492867fafdce9462da66bd8950c0f8173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827217634&rft_id=info:pmid/37336561&rfr_iscdi=true |