Loading…
k-Carrageenan based magnetic@polyelectrolyte complex composite hydrogel for pH and temperature-responsive curcumin delivery
The dual stimuli-responsive drug delivery system has attracted a lot of interest in controlled drug delivery to specific sites. The magnetic iron oxide nanoparticles integrated polyelectrolyte complex-based hydrogel (MPEC HG) system was developed in this work. First, magnetic nanoparticles were prod...
Saved in:
Published in: | International journal of biological macromolecules 2023-07, Vol.244, p.125467-125467, Article 125467 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dual stimuli-responsive drug delivery system has attracted a lot of interest in controlled drug delivery to specific sites. The magnetic iron oxide nanoparticles integrated polyelectrolyte complex-based hydrogel (MPEC HG) system was developed in this work. First, magnetic nanoparticles were produced in situ in the synthetic polymer polyhexamethylene guanidine (PHMG). Furthermore, the natural biopolymer k-carrageenan (kCG) was employed to form the polyelectrolyte complex (PEC) through charge-balancing interaction between positively charged guanidine units and negatively charged sulfonate groups. Various characterization approaches were used to characterize the developed magnetic polyelectrolyte complex hydrogel (MPEC HG) system. Curcumin (Cur) was employed as a model bioactive agent to examine the drug loading and stimuli-responsive drug release efficiency of the MPEC HG system. Under the combined pH and temperature stimuli conditions (pH 5.0/42 °C), the developed hydrogel system demonstrated great drug loading efficiency (∼ 68 %) and enhanced drug release. Furthermore, the MPEC HG system's in vitro cytotoxicity behavior was investigated on a human liver cancer (HepG2) cell line, and the results revealed that the MPEC HG system is biocompatible. As a result, the MPEC HG system might be used for dual pH and temperature stimuli-responsive drug delivery applications in cancer therapy. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.125467 |