Loading…
Rational design of antimicrobial peptide conjugated graphene-silver nanoparticle loaded chitosan wound dressing
Wound dressing with poor antibacterial properties, the tendency to adhere to the wound site, poor mechanical strength, and lack of porosity and flexibility are the major cause of blood loss, delayed wound repair, and sometimes causes death during the trauma or injury. In such cases, hydrogel-based a...
Saved in:
Published in: | International journal of biological macromolecules 2023-08, Vol.246, p.125347-125347, Article 125347 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wound dressing with poor antibacterial properties, the tendency to adhere to the wound site, poor mechanical strength, and lack of porosity and flexibility are the major cause of blood loss, delayed wound repair, and sometimes causes death during the trauma or injury. In such cases, hydrogel-based antibacterial wound dressing would be a boon to the existing dressing as the moist environment will maintain the cooling temperate and proper exchange of atmosphere around the wound. In the present study, the multifunctional graphene with silver and ε-Poly-l-lysine reinforced into the chitosan matrix (CGAPL) was prepared as a nanobiocomposite wound dressing. The contact angle measurement depicted the hydrophilic property of CGAPL nanobiocomposite dressing (water contact angle 42°), while the mechanical property was 78.9 MPa. The antibacterial and cell infiltration study showed the antimicrobial property of CGAPL nanobiocomposite wound dressing. It also demonstrated no cytotoxicity to the L929 fibroblast cells. Chorioallantoic Membrane (CAM) assay showed the pro-angiogenic potential of CGAPL nanobiocomposite wound dressing. In-vitro scratch wound assay confirmed the migration of cells and increased cell adhesion and proliferation within 18 h of culture on the surface of CGAPL nanobiocomposite dressing. Later, the in-vivo study in the Wistar rat model showed that CGAPL nanobiocomposite dressing significantly enhanced the wound healing process as compared to the commercially available wound dressing Tegaderm (p-value |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.125347 |