Loading…

Introduction of anticoagulation group to polypropylene film by radiation grafting and its blood compatibility

Based on in vitro tests for an improvement of the blood compatibility of polypropylene (PP) films by grafting O-butyrylchitosan (OBCS), we prepared a novel biocompatible film. The immobilization was accomplished by irradiating with ultraviolet light, OBCS being coated on the film surface to photolyz...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2004-04, Vol.228 (1), p.26-33
Main Authors: Mao, Chun, Zhang, Can, Qiu, Yongzhi, Zhu, Aiping, Shen, Jian, Lin, Sicong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on in vitro tests for an improvement of the blood compatibility of polypropylene (PP) films by grafting O-butyrylchitosan (OBCS), we prepared a novel biocompatible film. The immobilization was accomplished by irradiating with ultraviolet light, OBCS being coated on the film surface to photolyze azide groups, thus cross-linking OBCS and PP together. The grafted sample films were verified by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), electron spectroscopy for chemical analysis (ESCA) and the water contact angle measurements. The blood compatibility of the OBCS-grafted PP films was evaluated by platelet rich plasma (PRP) contacting experiments and protein adsorption experiments using blank PP film as the control. It demonstrated that blood compatibility of the OBCS-grafted surfaces is better than that of the blank PP. The suitable modifications could be carried out to tailor PP biomaterial to meet the specific needs of different biomedical applications. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving as a new biomaterial in medical use.
ISSN:0169-4332
1873-5584
DOI:10.1016/j.apsusc.2003.12.021