Loading…

Eryngium billardieri extract affects cardiac gene expression of master regulators of cardiomyaopathy in rats with high fatdiet-induced insulin resistance

For years, numerous studies have focused on identifying approaches to increase insulin sensitivity by modifying the signaling factors. In the present study, we examined the effects of Eryngium billardieri extract, as an anti-diabetic herbal medication, on the heart mRNA level of Akt serine/threonine...

Full description

Saved in:
Bibliographic Details
Published in:Clinical nutrition ESPEN 2023-08, Vol.56, p.59-66
Main Authors: Osqueei, Mohaddeseh Rashedi, Mahmoudabadi, Ali Zaree, Bahari, Zahra, Meftahi, Gholam Hossein, Movahedi, Monireh, Taghipour, Reza, Mousavi, Naser, Huseini, Hasan Fallah, Jangravi, Zohreh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For years, numerous studies have focused on identifying approaches to increase insulin sensitivity by modifying the signaling factors. In the present study, we examined the effects of Eryngium billardieri extract, as an anti-diabetic herbal medication, on the heart mRNA level of Akt serine/threonine kinase (Akt), mechanistic target of rapamycin kinase (mTOR), peroxisome proliferator-activated receptor gamma (PPARγ), and Forkhead box o1 (Foxo1) in rats with high-fat diet (HFD)-induced insulin resistance (IR). We also assessed the anti-diabetic effects of E. billardieri extract in rats with insulin resistance. Twenty-seven male Wistar rats were divided into two groups. Nine rats were fed a normal diet (control group), and 18 rats were fed an HFD for 13 weeks (HFD group). To confirm the induction of insulin resistance, the oral glucose tolerance test (OGTT) was performed and homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. Then rats with IR were randomly divided into the following groups: the HFD group, which continued an HFD, and the group treated with E. billardieri extract, which received the extract at a concentration of 50 mg/kg for 30 days. On the 30th day, the animals were sacrificed and serum samples were collected for biochemistry analyses. Furthermore, the expression of Akt, mTOR, PPARγ, and Foxo1 was measured in heart tissue using the real-time polymerase chain reaction (PCR) method. Real-time PCR analyses revealed that an HFD can significantly decrease the expression level of Akt, mTOR, and PPARγ in the heart tissue. However, an HFD significantly increased the expression level of Foxo1 in the HFD group compared to the control group (P 
ISSN:2405-4577
2405-4577
DOI:10.1016/j.clnesp.2023.04.016