Loading…
Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting
Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunc...
Saved in:
Published in: | Angewandte Chemie International Edition 2023-08, Vol.62 (33), p.e202306333-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43 |
---|---|
cites | cdi_FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43 |
container_end_page | n/a |
container_issue | 33 |
container_start_page | e202306333 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Lin, Xuliang Liu, Jianglin Qiu, Xueqing Liu, Bowen Wang, Xiaofei Chen, Liheng Qin, Yanlin |
description | Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin‐derived carbon was prepared by self‐assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N‐doped lignin‐derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate‐determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost‐effective catalysts.
Here, a novel lignin‐derived carbon‐supported Ru−FeNi@NLC heterojunction catalyst for water electrolysis was proposed. The synergistic interaction between the heterogeneous structure and the lignin‐derived carbon layer produced a total water decomposition interface adjustment of 10 mA cm−2 at 1.48 V, which reduced the energy barrier and improved the reaction kinetics of oxygen evolution and hydrogen evolution reactions. |
doi_str_mv | 10.1002/anie.202306333 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828759544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828759544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43</originalsourceid><addsrcrecordid>eNqF0T9vEzEYBnALUdHSsjIiSywsF3znu7MzhiillaJWAirGk_-8rhw5drB9rbLBxoj4iP0kOEpaJBYmW69-fmzrQeh1TSY1Ic174S1MGtJQ0lNKn6GTumvqijJGn5d9S2nFeFcfo5cprYrnnPQv0DFltO26np6gH5_Gh5-_z-HK4plzYYsvIEMMq9GrbINPOHi8tLfe-ofvvzREewcaz0WUZS4S_mDNQQqHFw5UjkGJLNw25YRNiHhhjFUWfMbXdxCFc_irKDfgzxtnc7b-9gwdGeESvDqsp-jmfPFlflEtrz9ezmfLSpXX0qqTZNpqCVRLxjTvNBe6lgSEYKTRghLJaAOql1K1csqMVrJVCrjpy9BAS0_Ru33uJoZvI6Q8rG1S4JzwEMY0NLzhrJt27Y6-_YeuwhjLF3eqZQ3pec-LmuyViiGlCGbYRLsWcTvUZNiVM-zKGZ7KKQfeHGJHuQb9xB_bKGC6B_fWwfY_ccPs6nLxN_wPhrqgkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847206868</pqid></control><display><type>article</type><title>Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lin, Xuliang ; Liu, Jianglin ; Qiu, Xueqing ; Liu, Bowen ; Wang, Xiaofei ; Chen, Liheng ; Qin, Yanlin</creator><creatorcontrib>Lin, Xuliang ; Liu, Jianglin ; Qiu, Xueqing ; Liu, Bowen ; Wang, Xiaofei ; Chen, Liheng ; Qin, Yanlin</creatorcontrib><description>Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin‐derived carbon was prepared by self‐assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N‐doped lignin‐derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate‐determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost‐effective catalysts.
Here, a novel lignin‐derived carbon‐supported Ru−FeNi@NLC heterojunction catalyst for water electrolysis was proposed. The synergistic interaction between the heterogeneous structure and the lignin‐derived carbon layer produced a total water decomposition interface adjustment of 10 mA cm−2 at 1.48 V, which reduced the energy barrier and improved the reaction kinetics of oxygen evolution and hydrogen evolution reactions.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202306333</identifier><identifier>PMID: 37345563</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bifunctional Electrocatalysts ; Carbon ; Catalysts ; Electrocatalysts ; Electron transfer ; Electronic structure ; Free energy ; Green hydrogen ; Heterojunction ; Heterojunctions ; Hydrogen evolution reactions ; Hydrogen production ; Intermediates ; Intermetallic compounds ; Lignin ; Lignin-Derived Carbon ; Nanoalloys ; Nanoparticles ; Oxygen evolution reactions ; Pyrolysis ; Reaction kinetics ; Ruthenium ; Self-assembly ; Splitting ; Water Splitting</subject><ispartof>Angewandte Chemie International Edition, 2023-08, Vol.62 (33), p.e202306333-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43</citedby><cites>FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43</cites><orcidid>0000-0003-2170-5985 ; 0000-0001-7501-7972 ; 0000-0001-8765-7061 ; 0000-0003-3633-5446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37345563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Xuliang</creatorcontrib><creatorcontrib>Liu, Jianglin</creatorcontrib><creatorcontrib>Qiu, Xueqing</creatorcontrib><creatorcontrib>Liu, Bowen</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Chen, Liheng</creatorcontrib><creatorcontrib>Qin, Yanlin</creatorcontrib><title>Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin‐derived carbon was prepared by self‐assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N‐doped lignin‐derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate‐determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost‐effective catalysts.
Here, a novel lignin‐derived carbon‐supported Ru−FeNi@NLC heterojunction catalyst for water electrolysis was proposed. The synergistic interaction between the heterogeneous structure and the lignin‐derived carbon layer produced a total water decomposition interface adjustment of 10 mA cm−2 at 1.48 V, which reduced the energy barrier and improved the reaction kinetics of oxygen evolution and hydrogen evolution reactions.</description><subject>Bifunctional Electrocatalysts</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Green hydrogen</subject><subject>Heterojunction</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Intermediates</subject><subject>Intermetallic compounds</subject><subject>Lignin</subject><subject>Lignin-Derived Carbon</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxygen evolution reactions</subject><subject>Pyrolysis</subject><subject>Reaction kinetics</subject><subject>Ruthenium</subject><subject>Self-assembly</subject><subject>Splitting</subject><subject>Water Splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0T9vEzEYBnALUdHSsjIiSywsF3znu7MzhiillaJWAirGk_-8rhw5drB9rbLBxoj4iP0kOEpaJBYmW69-fmzrQeh1TSY1Ic174S1MGtJQ0lNKn6GTumvqijJGn5d9S2nFeFcfo5cprYrnnPQv0DFltO26np6gH5_Gh5-_z-HK4plzYYsvIEMMq9GrbINPOHi8tLfe-ofvvzREewcaz0WUZS4S_mDNQQqHFw5UjkGJLNw25YRNiHhhjFUWfMbXdxCFc_irKDfgzxtnc7b-9gwdGeESvDqsp-jmfPFlflEtrz9ezmfLSpXX0qqTZNpqCVRLxjTvNBe6lgSEYKTRghLJaAOql1K1csqMVrJVCrjpy9BAS0_Ru33uJoZvI6Q8rG1S4JzwEMY0NLzhrJt27Y6-_YeuwhjLF3eqZQ3pec-LmuyViiGlCGbYRLsWcTvUZNiVM-zKGZ7KKQfeHGJHuQb9xB_bKGC6B_fWwfY_ccPs6nLxN_wPhrqgkQ</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Lin, Xuliang</creator><creator>Liu, Jianglin</creator><creator>Qiu, Xueqing</creator><creator>Liu, Bowen</creator><creator>Wang, Xiaofei</creator><creator>Chen, Liheng</creator><creator>Qin, Yanlin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2170-5985</orcidid><orcidid>https://orcid.org/0000-0001-7501-7972</orcidid><orcidid>https://orcid.org/0000-0001-8765-7061</orcidid><orcidid>https://orcid.org/0000-0003-3633-5446</orcidid></search><sort><creationdate>20230814</creationdate><title>Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting</title><author>Lin, Xuliang ; Liu, Jianglin ; Qiu, Xueqing ; Liu, Bowen ; Wang, Xiaofei ; Chen, Liheng ; Qin, Yanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bifunctional Electrocatalysts</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Green hydrogen</topic><topic>Heterojunction</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Intermediates</topic><topic>Intermetallic compounds</topic><topic>Lignin</topic><topic>Lignin-Derived Carbon</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxygen evolution reactions</topic><topic>Pyrolysis</topic><topic>Reaction kinetics</topic><topic>Ruthenium</topic><topic>Self-assembly</topic><topic>Splitting</topic><topic>Water Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xuliang</creatorcontrib><creatorcontrib>Liu, Jianglin</creatorcontrib><creatorcontrib>Qiu, Xueqing</creatorcontrib><creatorcontrib>Liu, Bowen</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Chen, Liheng</creatorcontrib><creatorcontrib>Qin, Yanlin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xuliang</au><au>Liu, Jianglin</au><au>Qiu, Xueqing</au><au>Liu, Bowen</au><au>Wang, Xiaofei</au><au>Chen, Liheng</au><au>Qin, Yanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-08-14</date><risdate>2023</risdate><volume>62</volume><issue>33</issue><spage>e202306333</spage><epage>n/a</epage><pages>e202306333-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin‐derived carbon was prepared by self‐assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N‐doped lignin‐derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate‐determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost‐effective catalysts.
Here, a novel lignin‐derived carbon‐supported Ru−FeNi@NLC heterojunction catalyst for water electrolysis was proposed. The synergistic interaction between the heterogeneous structure and the lignin‐derived carbon layer produced a total water decomposition interface adjustment of 10 mA cm−2 at 1.48 V, which reduced the energy barrier and improved the reaction kinetics of oxygen evolution and hydrogen evolution reactions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37345563</pmid><doi>10.1002/anie.202306333</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2170-5985</orcidid><orcidid>https://orcid.org/0000-0001-7501-7972</orcidid><orcidid>https://orcid.org/0000-0001-8765-7061</orcidid><orcidid>https://orcid.org/0000-0003-3633-5446</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-08, Vol.62 (33), p.e202306333-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2828759544 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bifunctional Electrocatalysts Carbon Catalysts Electrocatalysts Electron transfer Electronic structure Free energy Green hydrogen Heterojunction Heterojunctions Hydrogen evolution reactions Hydrogen production Intermediates Intermetallic compounds Lignin Lignin-Derived Carbon Nanoalloys Nanoparticles Oxygen evolution reactions Pyrolysis Reaction kinetics Ruthenium Self-assembly Splitting Water Splitting |
title | Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ru%E2%88%92FeNi%20Alloy%20Heterojunctions%20on%20Lignin%E2%80%90derived%20Carbon%20as%20Bifunctional%20Electrocatalysts%20for%20Efficient%20Overall%20Water%20Splitting&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lin,%20Xuliang&rft.date=2023-08-14&rft.volume=62&rft.issue=33&rft.spage=e202306333&rft.epage=n/a&rft.pages=e202306333-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202306333&rft_dat=%3Cproquest_cross%3E2828759544%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847206868&rft_id=info:pmid/37345563&rfr_iscdi=true |