Loading…

Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting

Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunc...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2023-08, Vol.62 (33), p.e202306333-n/a
Main Authors: Lin, Xuliang, Liu, Jianglin, Qiu, Xueqing, Liu, Bowen, Wang, Xiaofei, Chen, Liheng, Qin, Yanlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43
cites cdi_FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43
container_end_page n/a
container_issue 33
container_start_page e202306333
container_title Angewandte Chemie International Edition
container_volume 62
creator Lin, Xuliang
Liu, Jianglin
Qiu, Xueqing
Liu, Bowen
Wang, Xiaofei
Chen, Liheng
Qin, Yanlin
description Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin‐derived carbon was prepared by self‐assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N‐doped lignin‐derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate‐determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost‐effective catalysts. Here, a novel lignin‐derived carbon‐supported Ru−FeNi@NLC heterojunction catalyst for water electrolysis was proposed. The synergistic interaction between the heterogeneous structure and the lignin‐derived carbon layer produced a total water decomposition interface adjustment of 10 mA cm−2 at 1.48 V, which reduced the energy barrier and improved the reaction kinetics of oxygen evolution and hydrogen evolution reactions.
doi_str_mv 10.1002/anie.202306333
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828759544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828759544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43</originalsourceid><addsrcrecordid>eNqF0T9vEzEYBnALUdHSsjIiSywsF3znu7MzhiillaJWAirGk_-8rhw5drB9rbLBxoj4iP0kOEpaJBYmW69-fmzrQeh1TSY1Ic174S1MGtJQ0lNKn6GTumvqijJGn5d9S2nFeFcfo5cprYrnnPQv0DFltO26np6gH5_Gh5-_z-HK4plzYYsvIEMMq9GrbINPOHi8tLfe-ofvvzREewcaz0WUZS4S_mDNQQqHFw5UjkGJLNw25YRNiHhhjFUWfMbXdxCFc_irKDfgzxtnc7b-9gwdGeESvDqsp-jmfPFlflEtrz9ezmfLSpXX0qqTZNpqCVRLxjTvNBe6lgSEYKTRghLJaAOql1K1csqMVrJVCrjpy9BAS0_Ru33uJoZvI6Q8rG1S4JzwEMY0NLzhrJt27Y6-_YeuwhjLF3eqZQ3pec-LmuyViiGlCGbYRLsWcTvUZNiVM-zKGZ7KKQfeHGJHuQb9xB_bKGC6B_fWwfY_ccPs6nLxN_wPhrqgkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847206868</pqid></control><display><type>article</type><title>Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lin, Xuliang ; Liu, Jianglin ; Qiu, Xueqing ; Liu, Bowen ; Wang, Xiaofei ; Chen, Liheng ; Qin, Yanlin</creator><creatorcontrib>Lin, Xuliang ; Liu, Jianglin ; Qiu, Xueqing ; Liu, Bowen ; Wang, Xiaofei ; Chen, Liheng ; Qin, Yanlin</creatorcontrib><description>Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin‐derived carbon was prepared by self‐assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N‐doped lignin‐derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate‐determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost‐effective catalysts. Here, a novel lignin‐derived carbon‐supported Ru−FeNi@NLC heterojunction catalyst for water electrolysis was proposed. The synergistic interaction between the heterogeneous structure and the lignin‐derived carbon layer produced a total water decomposition interface adjustment of 10 mA cm−2 at 1.48 V, which reduced the energy barrier and improved the reaction kinetics of oxygen evolution and hydrogen evolution reactions.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202306333</identifier><identifier>PMID: 37345563</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bifunctional Electrocatalysts ; Carbon ; Catalysts ; Electrocatalysts ; Electron transfer ; Electronic structure ; Free energy ; Green hydrogen ; Heterojunction ; Heterojunctions ; Hydrogen evolution reactions ; Hydrogen production ; Intermediates ; Intermetallic compounds ; Lignin ; Lignin-Derived Carbon ; Nanoalloys ; Nanoparticles ; Oxygen evolution reactions ; Pyrolysis ; Reaction kinetics ; Ruthenium ; Self-assembly ; Splitting ; Water Splitting</subject><ispartof>Angewandte Chemie International Edition, 2023-08, Vol.62 (33), p.e202306333-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43</citedby><cites>FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43</cites><orcidid>0000-0003-2170-5985 ; 0000-0001-7501-7972 ; 0000-0001-8765-7061 ; 0000-0003-3633-5446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37345563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Xuliang</creatorcontrib><creatorcontrib>Liu, Jianglin</creatorcontrib><creatorcontrib>Qiu, Xueqing</creatorcontrib><creatorcontrib>Liu, Bowen</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Chen, Liheng</creatorcontrib><creatorcontrib>Qin, Yanlin</creatorcontrib><title>Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin‐derived carbon was prepared by self‐assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N‐doped lignin‐derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate‐determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost‐effective catalysts. Here, a novel lignin‐derived carbon‐supported Ru−FeNi@NLC heterojunction catalyst for water electrolysis was proposed. The synergistic interaction between the heterogeneous structure and the lignin‐derived carbon layer produced a total water decomposition interface adjustment of 10 mA cm−2 at 1.48 V, which reduced the energy barrier and improved the reaction kinetics of oxygen evolution and hydrogen evolution reactions.</description><subject>Bifunctional Electrocatalysts</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Electrocatalysts</subject><subject>Electron transfer</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Green hydrogen</subject><subject>Heterojunction</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Intermediates</subject><subject>Intermetallic compounds</subject><subject>Lignin</subject><subject>Lignin-Derived Carbon</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxygen evolution reactions</subject><subject>Pyrolysis</subject><subject>Reaction kinetics</subject><subject>Ruthenium</subject><subject>Self-assembly</subject><subject>Splitting</subject><subject>Water Splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0T9vEzEYBnALUdHSsjIiSywsF3znu7MzhiillaJWAirGk_-8rhw5drB9rbLBxoj4iP0kOEpaJBYmW69-fmzrQeh1TSY1Ic174S1MGtJQ0lNKn6GTumvqijJGn5d9S2nFeFcfo5cprYrnnPQv0DFltO26np6gH5_Gh5-_z-HK4plzYYsvIEMMq9GrbINPOHi8tLfe-ofvvzREewcaz0WUZS4S_mDNQQqHFw5UjkGJLNw25YRNiHhhjFUWfMbXdxCFc_irKDfgzxtnc7b-9gwdGeESvDqsp-jmfPFlflEtrz9ezmfLSpXX0qqTZNpqCVRLxjTvNBe6lgSEYKTRghLJaAOql1K1csqMVrJVCrjpy9BAS0_Ru33uJoZvI6Q8rG1S4JzwEMY0NLzhrJt27Y6-_YeuwhjLF3eqZQ3pec-LmuyViiGlCGbYRLsWcTvUZNiVM-zKGZ7KKQfeHGJHuQb9xB_bKGC6B_fWwfY_ccPs6nLxN_wPhrqgkQ</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Lin, Xuliang</creator><creator>Liu, Jianglin</creator><creator>Qiu, Xueqing</creator><creator>Liu, Bowen</creator><creator>Wang, Xiaofei</creator><creator>Chen, Liheng</creator><creator>Qin, Yanlin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2170-5985</orcidid><orcidid>https://orcid.org/0000-0001-7501-7972</orcidid><orcidid>https://orcid.org/0000-0001-8765-7061</orcidid><orcidid>https://orcid.org/0000-0003-3633-5446</orcidid></search><sort><creationdate>20230814</creationdate><title>Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting</title><author>Lin, Xuliang ; Liu, Jianglin ; Qiu, Xueqing ; Liu, Bowen ; Wang, Xiaofei ; Chen, Liheng ; Qin, Yanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bifunctional Electrocatalysts</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Electrocatalysts</topic><topic>Electron transfer</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Green hydrogen</topic><topic>Heterojunction</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Intermediates</topic><topic>Intermetallic compounds</topic><topic>Lignin</topic><topic>Lignin-Derived Carbon</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxygen evolution reactions</topic><topic>Pyrolysis</topic><topic>Reaction kinetics</topic><topic>Ruthenium</topic><topic>Self-assembly</topic><topic>Splitting</topic><topic>Water Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xuliang</creatorcontrib><creatorcontrib>Liu, Jianglin</creatorcontrib><creatorcontrib>Qiu, Xueqing</creatorcontrib><creatorcontrib>Liu, Bowen</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Chen, Liheng</creatorcontrib><creatorcontrib>Qin, Yanlin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xuliang</au><au>Liu, Jianglin</au><au>Qiu, Xueqing</au><au>Liu, Bowen</au><au>Wang, Xiaofei</au><au>Chen, Liheng</au><au>Qin, Yanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-08-14</date><risdate>2023</risdate><volume>62</volume><issue>33</issue><spage>e202306333</spage><epage>n/a</epage><pages>e202306333-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin‐derived carbon was prepared by self‐assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N‐doped lignin‐derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate‐determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost‐effective catalysts. Here, a novel lignin‐derived carbon‐supported Ru−FeNi@NLC heterojunction catalyst for water electrolysis was proposed. The synergistic interaction between the heterogeneous structure and the lignin‐derived carbon layer produced a total water decomposition interface adjustment of 10 mA cm−2 at 1.48 V, which reduced the energy barrier and improved the reaction kinetics of oxygen evolution and hydrogen evolution reactions.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37345563</pmid><doi>10.1002/anie.202306333</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2170-5985</orcidid><orcidid>https://orcid.org/0000-0001-7501-7972</orcidid><orcidid>https://orcid.org/0000-0001-8765-7061</orcidid><orcidid>https://orcid.org/0000-0003-3633-5446</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-08, Vol.62 (33), p.e202306333-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2828759544
source Wiley-Blackwell Read & Publish Collection
subjects Bifunctional Electrocatalysts
Carbon
Catalysts
Electrocatalysts
Electron transfer
Electronic structure
Free energy
Green hydrogen
Heterojunction
Heterojunctions
Hydrogen evolution reactions
Hydrogen production
Intermediates
Intermetallic compounds
Lignin
Lignin-Derived Carbon
Nanoalloys
Nanoparticles
Oxygen evolution reactions
Pyrolysis
Reaction kinetics
Ruthenium
Self-assembly
Splitting
Water Splitting
title Ru−FeNi Alloy Heterojunctions on Lignin‐derived Carbon as Bifunctional Electrocatalysts for Efficient Overall Water Splitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ru%E2%88%92FeNi%20Alloy%20Heterojunctions%20on%20Lignin%E2%80%90derived%20Carbon%20as%20Bifunctional%20Electrocatalysts%20for%20Efficient%20Overall%20Water%20Splitting&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lin,%20Xuliang&rft.date=2023-08-14&rft.volume=62&rft.issue=33&rft.spage=e202306333&rft.epage=n/a&rft.pages=e202306333-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202306333&rft_dat=%3Cproquest_cross%3E2828759544%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3733-5b094dbe3db77d85d8ad1b0eaa702da30b732ec6bbc4b97fdcb4cce8f6ec6fe43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847206868&rft_id=info:pmid/37345563&rfr_iscdi=true