Loading…
Neural network-based colonoscopic diagnosis using on-line learning and differential evolution
In this paper, on-line training of neural networks is investigated in the context of computer-assisted colonoscopic diagnosis. A memory-based adaptation of the learning rate for the on-line back-propagation (BP) is proposed and used to seed an on-line evolution process that applies a differential ev...
Saved in:
Published in: | Applied soft computing 2004-09, Vol.4 (4), p.369-379 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, on-line training of neural networks is investigated in the context of computer-assisted colonoscopic diagnosis. A memory-based adaptation of the learning rate for the on-line back-propagation (BP) is proposed and used to seed an on-line evolution process that applies a differential evolution (DE) strategy to (re-) adapt the neural network to modified environmental conditions. Our approach looks at on-line training from the perspective of tracking the changing location of an approximate solution of a pattern-based, and thus, dynamically changing, error function. The proposed hybrid strategy is compared with other standard training methods that have traditionally been used for training neural networks off-line. Results in interpreting colonoscopy images and frames of video sequences are promising and suggest that networks trained with this strategy detect malignant regions of interest with accuracy. |
---|---|
ISSN: | 1568-4946 |
DOI: | 10.1016/j.asoc.2004.01.005 |