Loading…

Efficient computational schemes for the orthogonal least squares algorithm

The orthogonal least squares (OLS) algorithm is an efficient implementation of the forward selection method for subset model selection. The ability to find good subset parameters with only a linearly increasing computational requirement makes this method attractive for practical implementations. We...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1995-01, Vol.43 (1), p.373-376
Main Authors: Chng, E.S., Chen, S., Mulgrew, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-1130999720766216ea0c6ca4fe9e02cb0fe91c190276c18b6b88ef3b9baf724d3
cites cdi_FETCH-LOGICAL-c341t-1130999720766216ea0c6ca4fe9e02cb0fe91c190276c18b6b88ef3b9baf724d3
container_end_page 376
container_issue 1
container_start_page 373
container_title IEEE transactions on signal processing
container_volume 43
creator Chng, E.S.
Chen, S.
Mulgrew, B.
description The orthogonal least squares (OLS) algorithm is an efficient implementation of the forward selection method for subset model selection. The ability to find good subset parameters with only a linearly increasing computational requirement makes this method attractive for practical implementations. We examine the computational complexity of the algorithm and present a preprocessing method for reducing the computational requirement.< >
doi_str_mv 10.1109/78.365331
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28291069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>365331</ieee_id><sourcerecordid>28291069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-1130999720766216ea0c6ca4fe9e02cb0fe91c190276c18b6b88ef3b9baf724d3</originalsourceid><addsrcrecordid>eNpFkDtPwzAUhS0EEqUwsDJlQEgMKX7VjxFV5aVKLCCxRY65boySurWdgX9PaCqY7pHOd7_hIHRJ8IwQrO-kmjExZ4wcoQnRnJSYS3E8ZDxn5VzJj1N0ltIXxoRzLSboZemctx42ubCh2_bZZB82pi2SbaCDVLgQi9xAEWJuwnpftWBSLtKuN3EATLsO0eemO0cnzrQJLg53it4flm-Lp3L1-vi8uF-VlnGSS0IY1lpLiqUQlAgw2ApruAMNmNoaD4FYojGVwhJVi1opcKzWtXGS8k82RTejdxvDroeUq84nC21rNhD6VFFFNcFCD-DtCNoYUorgqm30nYnfFcHV71qVVNW41sBeH6QmWdO6aDbWp78Hxqnie-xqxDwA_Lej4wfLR3Hh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28291069</pqid></control><display><type>article</type><title>Efficient computational schemes for the orthogonal least squares algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chng, E.S. ; Chen, S. ; Mulgrew, B.</creator><creatorcontrib>Chng, E.S. ; Chen, S. ; Mulgrew, B.</creatorcontrib><description>The orthogonal least squares (OLS) algorithm is an efficient implementation of the forward selection method for subset model selection. The ability to find good subset parameters with only a linearly increasing computational requirement makes this method attractive for practical implementations. We examine the computational complexity of the algorithm and present a preprocessing method for reducing the computational requirement.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.365331</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computational complexity ; Degradation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Integrated circuit modeling ; Least squares methods ; Linear regression ; Predictive models ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Telecommunications and information theory ; Vectors</subject><ispartof>IEEE transactions on signal processing, 1995-01, Vol.43 (1), p.373-376</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-1130999720766216ea0c6ca4fe9e02cb0fe91c190276c18b6b88ef3b9baf724d3</citedby><cites>FETCH-LOGICAL-c341t-1130999720766216ea0c6ca4fe9e02cb0fe91c190276c18b6b88ef3b9baf724d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/365331$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3428431$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chng, E.S.</creatorcontrib><creatorcontrib>Chen, S.</creatorcontrib><creatorcontrib>Mulgrew, B.</creatorcontrib><title>Efficient computational schemes for the orthogonal least squares algorithm</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The orthogonal least squares (OLS) algorithm is an efficient implementation of the forward selection method for subset model selection. The ability to find good subset parameters with only a linearly increasing computational requirement makes this method attractive for practical implementations. We examine the computational complexity of the algorithm and present a preprocessing method for reducing the computational requirement.&lt; &gt;</description><subject>Applied sciences</subject><subject>Computational complexity</subject><subject>Degradation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Integrated circuit modeling</subject><subject>Least squares methods</subject><subject>Linear regression</subject><subject>Predictive models</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Vectors</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpFkDtPwzAUhS0EEqUwsDJlQEgMKX7VjxFV5aVKLCCxRY65boySurWdgX9PaCqY7pHOd7_hIHRJ8IwQrO-kmjExZ4wcoQnRnJSYS3E8ZDxn5VzJj1N0ltIXxoRzLSboZemctx42ubCh2_bZZB82pi2SbaCDVLgQi9xAEWJuwnpftWBSLtKuN3EATLsO0eemO0cnzrQJLg53it4flm-Lp3L1-vi8uF-VlnGSS0IY1lpLiqUQlAgw2ApruAMNmNoaD4FYojGVwhJVi1opcKzWtXGS8k82RTejdxvDroeUq84nC21rNhD6VFFFNcFCD-DtCNoYUorgqm30nYnfFcHV71qVVNW41sBeH6QmWdO6aDbWp78Hxqnie-xqxDwA_Lej4wfLR3Hh</recordid><startdate>199501</startdate><enddate>199501</enddate><creator>Chng, E.S.</creator><creator>Chen, S.</creator><creator>Mulgrew, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199501</creationdate><title>Efficient computational schemes for the orthogonal least squares algorithm</title><author>Chng, E.S. ; Chen, S. ; Mulgrew, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-1130999720766216ea0c6ca4fe9e02cb0fe91c190276c18b6b88ef3b9baf724d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Applied sciences</topic><topic>Computational complexity</topic><topic>Degradation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Integrated circuit modeling</topic><topic>Least squares methods</topic><topic>Linear regression</topic><topic>Predictive models</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chng, E.S.</creatorcontrib><creatorcontrib>Chen, S.</creatorcontrib><creatorcontrib>Mulgrew, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chng, E.S.</au><au>Chen, S.</au><au>Mulgrew, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient computational schemes for the orthogonal least squares algorithm</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1995-01</date><risdate>1995</risdate><volume>43</volume><issue>1</issue><spage>373</spage><epage>376</epage><pages>373-376</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The orthogonal least squares (OLS) algorithm is an efficient implementation of the forward selection method for subset model selection. The ability to find good subset parameters with only a linearly increasing computational requirement makes this method attractive for practical implementations. We examine the computational complexity of the algorithm and present a preprocessing method for reducing the computational requirement.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.365331</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1995-01, Vol.43 (1), p.373-376
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28291069
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Computational complexity
Degradation
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Information, signal and communications theory
Integrated circuit modeling
Least squares methods
Linear regression
Predictive models
Signal and communications theory
Signal processing algorithms
Signal, noise
Telecommunications and information theory
Vectors
title Efficient computational schemes for the orthogonal least squares algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T16%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20computational%20schemes%20for%20the%20orthogonal%20least%20squares%20algorithm&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Chng,%20E.S.&rft.date=1995-01&rft.volume=43&rft.issue=1&rft.spage=373&rft.epage=376&rft.pages=373-376&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.365331&rft_dat=%3Cproquest_cross%3E28291069%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-1130999720766216ea0c6ca4fe9e02cb0fe91c190276c18b6b88ef3b9baf724d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28291069&rft_id=info:pmid/&rft_ieee_id=365331&rfr_iscdi=true