Loading…
Current approaches, and challenges on identification, remediation and potential risks of emerging plastic contaminants: A review
Plastics are widely employed in modern civilization because of their durability, mold ability, and light weight. In the recent decade, micro/nanoplastics research has steadily increased, highlighting its relevance. However, contaminating micro/nanoplastics in marine environments, terrestrial ecosyst...
Saved in:
Published in: | Environmental toxicology and pharmacology 2023-08, Vol.101, p.104193-104193, Article 104193 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plastics are widely employed in modern civilization because of their durability, mold ability, and light weight. In the recent decade, micro/nanoplastics research has steadily increased, highlighting its relevance. However, contaminating micro/nanoplastics in marine environments, terrestrial ecosystems, and biological organisms is considered a severe threat to the environmental system. Geographical distribution, migration patterns, etymologies of formation, and ecological ramifications of absorption are just a few topics covered in the scientific literature on environmental issues. Degradable solutions from material science and chemistry are needed to address the micro/nanoplastics problem, primarily to reduce the production of these pollutants and their potential effects. Removing micro/nanoplastics from their discharge points has been a central and effective way to mitigate the adverse pollution effects. In this review, we begin by discussing the hazardous effect on living beings and the identification-characterization of micro/nanoplastics. Then, we provide a summary of the existing degradation strategies, which include bio-degradation and advanced oxidation processes (AOPs), and a detailed discussion of their degradation mechanisms is also represented. Finally, a persuasive summary of the evaluated work and projections for the future of this topic is provided.
[Display omitted]
•Nano/micro-plastics potentially persist for very long periods in the environment.•Challenges in nano/micro-plastics, ex. production, usage, and impact on the environment are discussed.•Various elimination methods for nano/micro-plastics are reviewed. |
---|---|
ISSN: | 1382-6689 1872-7077 |
DOI: | 10.1016/j.etap.2023.104193 |