Loading…
Supramolecular self-assembly of robust, ultra-stable, and high-temperature-resistant viscoelastic worm-like micelles
[Display omitted] Worm-like micelles are susceptible to heating owing to the fast dynamic exchange of molecules between micelles. Inhibition of such exchange could afford robust worm-like micelles, which is expected to largely improve rheology properties at high temperatures. A cationic surfactant d...
Saved in:
Published in: | Journal of colloid and interface science 2023-11, Vol.649, p.403-415 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Worm-like micelles are susceptible to heating owing to the fast dynamic exchange of molecules between micelles. Inhibition of such exchange could afford robust worm-like micelles, which is expected to largely improve rheology properties at high temperatures.
A cationic surfactant docosyl(trimethyl)azanium chloride (DCTAC) and a strongly hydrophobic organic counterion 3-hydroxy naphthalene-2-carboxylate (SHNC) were used for the worm-like micelles fabrication. The microstructure was characterized using cryogenic transmission electron microscopy and small-angle neutron scattering, and the interactions between DCTAC and SHNC were characterized using nuclear magnetic resonance spectroscopy. Rheometer was employed to measure the rheological properties of the solution.
SHNC/DCTAC at the molar ration of 1:2 forms ultra-stable worm-like micelles, whose viscosity remain stable at temperature up to 130 °C. SHNC is found to strongly adsorbs on DCTAC micelle with the orientation on the surface of micelle, keeping the naphthalene backbone entire penetration into the palisade layer while both carboxylic and hydroxyl groups protrude out of the micelle. With temperature increasing, this adsorption further strengthens, resulting in the growth contour length and accompanying the enhancement of rheological properties. One SHNC molecule and two DCTAC molecules are speculated to form a stable complex via multiple interactions including hydrophobic, cationic-π, and π-π interactions, which decreases the dynamic exchange of them between micelles. These findings are helpful to understand surfactant aggregates stability and assist the development of novel stable supramolecular nanostructures. Additionally, the excellent thermal stability of this worm-like micellar fluid makes it a potential high-temperature resistant clean fracturing fluid for deep oil reservoirs. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2023.06.086 |