Loading…
Efficient signal processing techniques for exploiting transmit antenna diversity on fading channels
A class of powerful and computationally efficient strategies for exploiting transmit antenna diversity on fading channels is developed. These strategies, which require simple linear processing at the transmitter and receiver, have attractive asymptotic characteristics. In particular, given a suffici...
Saved in:
Published in: | IEEE transactions on signal processing 1997-01, Vol.45 (1), p.191-205 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A class of powerful and computationally efficient strategies for exploiting transmit antenna diversity on fading channels is developed. These strategies, which require simple linear processing at the transmitter and receiver, have attractive asymptotic characteristics. In particular, given a sufficient number of transmit antennas, these techniques effectively transform a nonselective Rayleigh fading channel into a nonfading, simple white marginally Gaussian noise channel with no intersymbol interference. These strategies, which we refer to as linear antenna precoding, can be efficiently combined with trellis coding and other popular error-correcting codes for bandwidth-constrained Gaussian channels. Linear antenna precoding requires no additional power or bandwidth and is attractive in terms of robustness and delay considerations. The resulting schemes have powerful and convenient interpretations in terms of transforming nonselective fading channels into frequency- and time-selective ones. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.552216 |