Loading…

Flip chip on board solder joint reliability analysis using 2-D and 3-D FEA models

This study investigates the effects of employing different two-dimensional (2-D) and three-dimensional (3-D) finite element analysis (FEA) models for analyzing the solder joint reliability performance of a flip chip on board assembly. The FEA models investigated were the 2-D-plane strain, 2-D-plane...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on advanced packaging 2001-11, Vol.24 (4), p.499-506
Main Authors: Pang, J.H.L., Chong, D.Y.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the effects of employing different two-dimensional (2-D) and three-dimensional (3-D) finite element analysis (FEA) models for analyzing the solder joint reliability performance of a flip chip on board assembly. The FEA models investigated were the 2-D-plane strain, 2-D-plane stress, 3-D-1/8th symmetry and 3-D-strip models. The different stress and strain responses generated by the four different FEA models were applied to various solder joint low cycle fatigue life prediction relationships. The investigation shows that the 2-D-plane strain and 2-D-plane stress models gave the highest and lowest solder joint strains, respectively. The 3-D-strip and 3-D-1/8th symmetry model results fall in between the 2-D-plane strain and 2-D-plane stress model results. The 3-D-1/8th symmetry model agrees better with the 2-D-plane strain model, while the 3-D-strip model agrees better with the 2-D-plane stress model results. The results for the fatigue life prediction analyses also show similar trends.
ISSN:1521-3323
1557-9980
DOI:10.1109/6040.982836