Loading…
Fabrication of graphene oxide-based pretreatment filter and Electrochemical-CRISPR biosensor for the field-ready cyanobacteria monitoring system
Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an e...
Saved in:
Published in: | Biosensors & bioelectronics 2023-10, Vol.237, p.115474-115474, Article 115474 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an electrochemical clustered regularly interspaced short palindromic repeats (EC-CRISPR) biosensor. The cyanobacterial pretreatment device consists of a syringe, glass bead, and graphene oxide (GO) bead. Then, the M. aeruginosa dissolved in the freshwater sample was added to fabricated filter. After filtration, the purified gene was loaded onto a CRISPR-based electrochemical biosensor chip to detect M. aeruginosa gene fragments. The biosensor was composed of CRISPR/Cpf1 protein conjugated with MXene on an Au microgap electrode (AuMGE) integrated into a printed circuit board (PCB). This AuMGE/PCB system maximizes the signal-to-noise ratio, which controls the working and counter electrode areas requiring only 3 μL samples to obtain high reliability. Using the extracted M. aeruginosa gene with a pre-treatment filter, the CRISPR biosensor showed a limit of detection of 0.089 pg/μl in fresh water. Moreover, selectivity test and matrix condition test carried out using the EC-CRISPR biosensor. These handheld pre-treatment kit and biosensors can enable field-ready detection of CyanoHABs. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2023.115474 |