Loading…
Fabrication of graphene oxide-based pretreatment filter and Electrochemical-CRISPR biosensor for the field-ready cyanobacteria monitoring system
Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an e...
Saved in:
Published in: | Biosensors & bioelectronics 2023-10, Vol.237, p.115474-115474, Article 115474 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c400t-eb1bf032a8f3372aa99ff89dd9eed95cc1f8059fc851139165504790eb6c3ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c400t-eb1bf032a8f3372aa99ff89dd9eed95cc1f8059fc851139165504790eb6c3ec3 |
container_end_page | 115474 |
container_issue | |
container_start_page | 115474 |
container_title | Biosensors & bioelectronics |
container_volume | 237 |
creator | Kim, Gahyeon Li, Yun Guang Seo, Yoseph Baek, Changyoon Choi, Jin-Ha Park, Hyunjun An, Jeongyun Lee, Myoungro Noh, Seungwoo Min, Junhong Lee, Taek |
description | Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an electrochemical clustered regularly interspaced short palindromic repeats (EC-CRISPR) biosensor. The cyanobacterial pretreatment device consists of a syringe, glass bead, and graphene oxide (GO) bead. Then, the M. aeruginosa dissolved in the freshwater sample was added to fabricated filter. After filtration, the purified gene was loaded onto a CRISPR-based electrochemical biosensor chip to detect M. aeruginosa gene fragments. The biosensor was composed of CRISPR/Cpf1 protein conjugated with MXene on an Au microgap electrode (AuMGE) integrated into a printed circuit board (PCB). This AuMGE/PCB system maximizes the signal-to-noise ratio, which controls the working and counter electrode areas requiring only 3 μL samples to obtain high reliability. Using the extracted M. aeruginosa gene with a pre-treatment filter, the CRISPR biosensor showed a limit of detection of 0.089 pg/μl in fresh water. Moreover, selectivity test and matrix condition test carried out using the EC-CRISPR biosensor. These handheld pre-treatment kit and biosensors can enable field-ready detection of CyanoHABs. |
doi_str_mv | 10.1016/j.bios.2023.115474 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2830220842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566323004165</els_id><sourcerecordid>2830220842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-eb1bf032a8f3372aa99ff89dd9eed95cc1f8059fc851139165504790eb6c3ec3</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS1UREPgBVggL7uZ4J_xzFhiU0UpVKoEKt1bHvu6cTRjB9upmrfgkXGU0iWLq7s559O95yD0iZIVJbT7sluNPuYVI4yvKBVt375BCzr0vGkZFxdoQaToGtF1_BK9z3lHCOmpJO_QJe9513LCFujPjR6TN7r4GHB0-DHp_RYC4PjsLTSjzmDxPkFJoMsMoWDnpwIJ62DxZgJTUjRbmCtiatb3t79-3uPTVRByTNjVKVuoHphsUxH2iM1RhzhqUyFe4zkGX2Ly4RHnYy4wf0BvnZ4yfHzZS_Rws3lYf2_ufny7XV_fNaYlpDQw0tERzvTgOO-Z1lI6N0hrJYCVwhjqBiKkM4OglEvaCUHaXhIYO8PB8CW6OmP3Kf4-QC5q9tnANOkA8ZAVG2o8jAw1ySViZ6lJMecETu2Tn3U6KkrUqQi1U6eX1akIdS6imj6_8A_jDPbV8i_5Kvh6FkB98slDUtl4CAasTzVVZaP_H_8v_1uc-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830220842</pqid></control><display><type>article</type><title>Fabrication of graphene oxide-based pretreatment filter and Electrochemical-CRISPR biosensor for the field-ready cyanobacteria monitoring system</title><source>ScienceDirect Journals</source><creator>Kim, Gahyeon ; Li, Yun Guang ; Seo, Yoseph ; Baek, Changyoon ; Choi, Jin-Ha ; Park, Hyunjun ; An, Jeongyun ; Lee, Myoungro ; Noh, Seungwoo ; Min, Junhong ; Lee, Taek</creator><creatorcontrib>Kim, Gahyeon ; Li, Yun Guang ; Seo, Yoseph ; Baek, Changyoon ; Choi, Jin-Ha ; Park, Hyunjun ; An, Jeongyun ; Lee, Myoungro ; Noh, Seungwoo ; Min, Junhong ; Lee, Taek</creatorcontrib><description>Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an electrochemical clustered regularly interspaced short palindromic repeats (EC-CRISPR) biosensor. The cyanobacterial pretreatment device consists of a syringe, glass bead, and graphene oxide (GO) bead. Then, the M. aeruginosa dissolved in the freshwater sample was added to fabricated filter. After filtration, the purified gene was loaded onto a CRISPR-based electrochemical biosensor chip to detect M. aeruginosa gene fragments. The biosensor was composed of CRISPR/Cpf1 protein conjugated with MXene on an Au microgap electrode (AuMGE) integrated into a printed circuit board (PCB). This AuMGE/PCB system maximizes the signal-to-noise ratio, which controls the working and counter electrode areas requiring only 3 μL samples to obtain high reliability. Using the extracted M. aeruginosa gene with a pre-treatment filter, the CRISPR biosensor showed a limit of detection of 0.089 pg/μl in fresh water. Moreover, selectivity test and matrix condition test carried out using the EC-CRISPR biosensor. These handheld pre-treatment kit and biosensors can enable field-ready detection of CyanoHABs.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2023.115474</identifier><identifier>PMID: 37364302</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Aquatic ecosystem monitoring ; Biosensor ; Cyanobacteria ; Hand-held filter ; PCR-Free detection</subject><ispartof>Biosensors & bioelectronics, 2023-10, Vol.237, p.115474-115474, Article 115474</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-eb1bf032a8f3372aa99ff89dd9eed95cc1f8059fc851139165504790eb6c3ec3</citedby><cites>FETCH-LOGICAL-c400t-eb1bf032a8f3372aa99ff89dd9eed95cc1f8059fc851139165504790eb6c3ec3</cites><orcidid>0000-0002-1632-9586 ; 0000-0003-4158-130X ; 0000-0001-9410-8204 ; 0000-0002-2637-3505 ; 0000-0002-8176-0460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37364302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Gahyeon</creatorcontrib><creatorcontrib>Li, Yun Guang</creatorcontrib><creatorcontrib>Seo, Yoseph</creatorcontrib><creatorcontrib>Baek, Changyoon</creatorcontrib><creatorcontrib>Choi, Jin-Ha</creatorcontrib><creatorcontrib>Park, Hyunjun</creatorcontrib><creatorcontrib>An, Jeongyun</creatorcontrib><creatorcontrib>Lee, Myoungro</creatorcontrib><creatorcontrib>Noh, Seungwoo</creatorcontrib><creatorcontrib>Min, Junhong</creatorcontrib><creatorcontrib>Lee, Taek</creatorcontrib><title>Fabrication of graphene oxide-based pretreatment filter and Electrochemical-CRISPR biosensor for the field-ready cyanobacteria monitoring system</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an electrochemical clustered regularly interspaced short palindromic repeats (EC-CRISPR) biosensor. The cyanobacterial pretreatment device consists of a syringe, glass bead, and graphene oxide (GO) bead. Then, the M. aeruginosa dissolved in the freshwater sample was added to fabricated filter. After filtration, the purified gene was loaded onto a CRISPR-based electrochemical biosensor chip to detect M. aeruginosa gene fragments. The biosensor was composed of CRISPR/Cpf1 protein conjugated with MXene on an Au microgap electrode (AuMGE) integrated into a printed circuit board (PCB). This AuMGE/PCB system maximizes the signal-to-noise ratio, which controls the working and counter electrode areas requiring only 3 μL samples to obtain high reliability. Using the extracted M. aeruginosa gene with a pre-treatment filter, the CRISPR biosensor showed a limit of detection of 0.089 pg/μl in fresh water. Moreover, selectivity test and matrix condition test carried out using the EC-CRISPR biosensor. These handheld pre-treatment kit and biosensors can enable field-ready detection of CyanoHABs.</description><subject>Aquatic ecosystem monitoring</subject><subject>Biosensor</subject><subject>Cyanobacteria</subject><subject>Hand-held filter</subject><subject>PCR-Free detection</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEUhS1UREPgBVggL7uZ4J_xzFhiU0UpVKoEKt1bHvu6cTRjB9upmrfgkXGU0iWLq7s559O95yD0iZIVJbT7sluNPuYVI4yvKBVt375BCzr0vGkZFxdoQaToGtF1_BK9z3lHCOmpJO_QJe9513LCFujPjR6TN7r4GHB0-DHp_RYC4PjsLTSjzmDxPkFJoMsMoWDnpwIJ62DxZgJTUjRbmCtiatb3t79-3uPTVRByTNjVKVuoHphsUxH2iM1RhzhqUyFe4zkGX2Ly4RHnYy4wf0BvnZ4yfHzZS_Rws3lYf2_ufny7XV_fNaYlpDQw0tERzvTgOO-Z1lI6N0hrJYCVwhjqBiKkM4OglEvaCUHaXhIYO8PB8CW6OmP3Kf4-QC5q9tnANOkA8ZAVG2o8jAw1ySViZ6lJMecETu2Tn3U6KkrUqQi1U6eX1akIdS6imj6_8A_jDPbV8i_5Kvh6FkB98slDUtl4CAasTzVVZaP_H_8v_1uc-A</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Kim, Gahyeon</creator><creator>Li, Yun Guang</creator><creator>Seo, Yoseph</creator><creator>Baek, Changyoon</creator><creator>Choi, Jin-Ha</creator><creator>Park, Hyunjun</creator><creator>An, Jeongyun</creator><creator>Lee, Myoungro</creator><creator>Noh, Seungwoo</creator><creator>Min, Junhong</creator><creator>Lee, Taek</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1632-9586</orcidid><orcidid>https://orcid.org/0000-0003-4158-130X</orcidid><orcidid>https://orcid.org/0000-0001-9410-8204</orcidid><orcidid>https://orcid.org/0000-0002-2637-3505</orcidid><orcidid>https://orcid.org/0000-0002-8176-0460</orcidid></search><sort><creationdate>20231001</creationdate><title>Fabrication of graphene oxide-based pretreatment filter and Electrochemical-CRISPR biosensor for the field-ready cyanobacteria monitoring system</title><author>Kim, Gahyeon ; Li, Yun Guang ; Seo, Yoseph ; Baek, Changyoon ; Choi, Jin-Ha ; Park, Hyunjun ; An, Jeongyun ; Lee, Myoungro ; Noh, Seungwoo ; Min, Junhong ; Lee, Taek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-eb1bf032a8f3372aa99ff89dd9eed95cc1f8059fc851139165504790eb6c3ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic ecosystem monitoring</topic><topic>Biosensor</topic><topic>Cyanobacteria</topic><topic>Hand-held filter</topic><topic>PCR-Free detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gahyeon</creatorcontrib><creatorcontrib>Li, Yun Guang</creatorcontrib><creatorcontrib>Seo, Yoseph</creatorcontrib><creatorcontrib>Baek, Changyoon</creatorcontrib><creatorcontrib>Choi, Jin-Ha</creatorcontrib><creatorcontrib>Park, Hyunjun</creatorcontrib><creatorcontrib>An, Jeongyun</creatorcontrib><creatorcontrib>Lee, Myoungro</creatorcontrib><creatorcontrib>Noh, Seungwoo</creatorcontrib><creatorcontrib>Min, Junhong</creatorcontrib><creatorcontrib>Lee, Taek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gahyeon</au><au>Li, Yun Guang</au><au>Seo, Yoseph</au><au>Baek, Changyoon</au><au>Choi, Jin-Ha</au><au>Park, Hyunjun</au><au>An, Jeongyun</au><au>Lee, Myoungro</au><au>Noh, Seungwoo</au><au>Min, Junhong</au><au>Lee, Taek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of graphene oxide-based pretreatment filter and Electrochemical-CRISPR biosensor for the field-ready cyanobacteria monitoring system</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>237</volume><spage>115474</spage><epage>115474</epage><pages>115474-115474</pages><artnum>115474</artnum><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Microcystis aeruginosa (M. aeruginosa) cause the eutrophication of lakes and rivers. To effectively control the overgrowth of M. aeruginosa, a suitable measurement method should be required in the aquatic fields. To address this, we developed a field-ready cyanobacterial pretreatment device and an electrochemical clustered regularly interspaced short palindromic repeats (EC-CRISPR) biosensor. The cyanobacterial pretreatment device consists of a syringe, glass bead, and graphene oxide (GO) bead. Then, the M. aeruginosa dissolved in the freshwater sample was added to fabricated filter. After filtration, the purified gene was loaded onto a CRISPR-based electrochemical biosensor chip to detect M. aeruginosa gene fragments. The biosensor was composed of CRISPR/Cpf1 protein conjugated with MXene on an Au microgap electrode (AuMGE) integrated into a printed circuit board (PCB). This AuMGE/PCB system maximizes the signal-to-noise ratio, which controls the working and counter electrode areas requiring only 3 μL samples to obtain high reliability. Using the extracted M. aeruginosa gene with a pre-treatment filter, the CRISPR biosensor showed a limit of detection of 0.089 pg/μl in fresh water. Moreover, selectivity test and matrix condition test carried out using the EC-CRISPR biosensor. These handheld pre-treatment kit and biosensors can enable field-ready detection of CyanoHABs.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>37364302</pmid><doi>10.1016/j.bios.2023.115474</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1632-9586</orcidid><orcidid>https://orcid.org/0000-0003-4158-130X</orcidid><orcidid>https://orcid.org/0000-0001-9410-8204</orcidid><orcidid>https://orcid.org/0000-0002-2637-3505</orcidid><orcidid>https://orcid.org/0000-0002-8176-0460</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2023-10, Vol.237, p.115474-115474, Article 115474 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_2830220842 |
source | ScienceDirect Journals |
subjects | Aquatic ecosystem monitoring Biosensor Cyanobacteria Hand-held filter PCR-Free detection |
title | Fabrication of graphene oxide-based pretreatment filter and Electrochemical-CRISPR biosensor for the field-ready cyanobacteria monitoring system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20graphene%20oxide-based%20pretreatment%20filter%20and%20Electrochemical-CRISPR%20biosensor%20for%20the%20field-ready%20cyanobacteria%20monitoring%20system&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Kim,%20Gahyeon&rft.date=2023-10-01&rft.volume=237&rft.spage=115474&rft.epage=115474&rft.pages=115474-115474&rft.artnum=115474&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2023.115474&rft_dat=%3Cproquest_cross%3E2830220842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-eb1bf032a8f3372aa99ff89dd9eed95cc1f8059fc851139165504790eb6c3ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2830220842&rft_id=info:pmid/37364302&rfr_iscdi=true |