Loading…
scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data
AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopul...
Saved in:
Published in: | Computers in biology and medicine 2023-09, Vol.163, p.107152-107152, Article 107152 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783 |
---|---|
cites | cdi_FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783 |
container_end_page | 107152 |
container_issue | |
container_start_page | 107152 |
container_title | Computers in biology and medicine |
container_volume | 163 |
creator | Wang, Shudong Zhang, Yu Zhang, Yulin Wu, Wenhao Ye, Lan Li, YunYin Su, Jionglong Pang, Shanchen |
description | AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC. |
doi_str_mv | 10.1016/j.compbiomed.2023.107152 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2830220882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523006170</els_id><sourcerecordid>2849934217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EotvCX0CWuHDJMraTOOGAtKygRapAonDF8tqTxYsTp3ayUv89jrYFqSdOlsbPO1_vEEIZrBmw-u1hbUI_7lzo0a45cJHDklX8CVmxRrYFVKJ8SlYADIqy4dUZOU_pAAAlCHhOzoQUdVnxdkV-JrO5udy-o5uBaqvHyR2RJteP3nUOLd1HPf6iJgzH4OfJhYH2waKnXYjU-DlNGN2wz4ph77Ew6D399mVTJLylVk_6BXnWaZ_w5f17QX58-vh9e1Vcf738vN1cF6as5FQYU7dVbfIEnW2hbaq6Msbond01otYt53WpQQK30qCUYidL1qGwJrOV4LIRF-TNKe8Yw-2MaVK9S0s3esAwJ8UbAZxD0_CMvn6EHsIch9xdpsq2FSVnMlPNiTIxpBSxU2N0vY53ioFaPFAH9c8DtXigTh5k6av7AvNu-XsQPiw9Ax9OAOaNHB1GlYzDwaB1Ec2kbHD_U-X9oyTGu8EZ7X_jHaa_MzGVuAJ1s9zCcgpcANRMgvgDoFewNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849934217</pqid></control><display><type>article</type><title>scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data</title><source>Elsevier</source><creator>Wang, Shudong ; Zhang, Yu ; Zhang, Yulin ; Wu, Wenhao ; Ye, Lan ; Li, YunYin ; Su, Jionglong ; Pang, Shanchen</creator><creatorcontrib>Wang, Shudong ; Zhang, Yu ; Zhang, Yulin ; Wu, Wenhao ; Ye, Lan ; Li, YunYin ; Su, Jionglong ; Pang, Shanchen</creatorcontrib><description>AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.107152</identifier><identifier>PMID: 37364529</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bioinformatics ; Biology ; Cells ; Clustering ; Computational biology ; Computers ; Convolution ; Datasets ; Deep learning ; Gene expression ; Gene sequencing ; Graph convolution ; Graphs ; Heterogeneity ; Internal Medicine ; Machine learning ; Medical research ; Methods ; Neural networks ; Other ; Ribonucleic acid ; RNA ; ScRNA-seq ; Source code ; Subpopulations</subject><ispartof>Computers in biology and medicine, 2023-09, Vol.163, p.107152-107152, Article 107152</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783</citedby><cites>FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783</cites><orcidid>0009-0003-7914-6159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37364529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shudong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Ye, Lan</creatorcontrib><creatorcontrib>Li, YunYin</creatorcontrib><creatorcontrib>Su, Jionglong</creatorcontrib><creatorcontrib>Pang, Shanchen</creatorcontrib><title>scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.</description><subject>Bioinformatics</subject><subject>Biology</subject><subject>Cells</subject><subject>Clustering</subject><subject>Computational biology</subject><subject>Computers</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Graph convolution</subject><subject>Graphs</subject><subject>Heterogeneity</subject><subject>Internal Medicine</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Other</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>ScRNA-seq</subject><subject>Source code</subject><subject>Subpopulations</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EotvCX0CWuHDJMraTOOGAtKygRapAonDF8tqTxYsTp3ayUv89jrYFqSdOlsbPO1_vEEIZrBmw-u1hbUI_7lzo0a45cJHDklX8CVmxRrYFVKJ8SlYADIqy4dUZOU_pAAAlCHhOzoQUdVnxdkV-JrO5udy-o5uBaqvHyR2RJteP3nUOLd1HPf6iJgzH4OfJhYH2waKnXYjU-DlNGN2wz4ph77Ew6D399mVTJLylVk_6BXnWaZ_w5f17QX58-vh9e1Vcf738vN1cF6as5FQYU7dVbfIEnW2hbaq6Msbond01otYt53WpQQK30qCUYidL1qGwJrOV4LIRF-TNKe8Yw-2MaVK9S0s3esAwJ8UbAZxD0_CMvn6EHsIch9xdpsq2FSVnMlPNiTIxpBSxU2N0vY53ioFaPFAH9c8DtXigTh5k6av7AvNu-XsQPiw9Ax9OAOaNHB1GlYzDwaB1Ec2kbHD_U-X9oyTGu8EZ7X_jHaa_MzGVuAJ1s9zCcgpcANRMgvgDoFewNQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wang, Shudong</creator><creator>Zhang, Yu</creator><creator>Zhang, Yulin</creator><creator>Wu, Wenhao</creator><creator>Ye, Lan</creator><creator>Li, YunYin</creator><creator>Su, Jionglong</creator><creator>Pang, Shanchen</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-7914-6159</orcidid></search><sort><creationdate>20230901</creationdate><title>scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data</title><author>Wang, Shudong ; Zhang, Yu ; Zhang, Yulin ; Wu, Wenhao ; Ye, Lan ; Li, YunYin ; Su, Jionglong ; Pang, Shanchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioinformatics</topic><topic>Biology</topic><topic>Cells</topic><topic>Clustering</topic><topic>Computational biology</topic><topic>Computers</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Graph convolution</topic><topic>Graphs</topic><topic>Heterogeneity</topic><topic>Internal Medicine</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Other</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>ScRNA-seq</topic><topic>Source code</topic><topic>Subpopulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shudong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Ye, Lan</creatorcontrib><creatorcontrib>Li, YunYin</creatorcontrib><creatorcontrib>Su, Jionglong</creatorcontrib><creatorcontrib>Pang, Shanchen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Hospital Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shudong</au><au>Zhang, Yu</au><au>Zhang, Yulin</au><au>Wu, Wenhao</au><au>Ye, Lan</au><au>Li, YunYin</au><au>Su, Jionglong</au><au>Pang, Shanchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>163</volume><spage>107152</spage><epage>107152</epage><pages>107152-107152</pages><artnum>107152</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37364529</pmid><doi>10.1016/j.compbiomed.2023.107152</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-7914-6159</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2023-09, Vol.163, p.107152-107152, Article 107152 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2830220882 |
source | Elsevier |
subjects | Bioinformatics Biology Cells Clustering Computational biology Computers Convolution Datasets Deep learning Gene expression Gene sequencing Graph convolution Graphs Heterogeneity Internal Medicine Machine learning Medical research Methods Neural networks Other Ribonucleic acid RNA ScRNA-seq Source code Subpopulations |
title | scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T13%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=scASGC:%20An%20adaptive%20simplified%20graph%20convolution%20model%20for%20clustering%20single-cell%20RNA-seq%20data&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Wang,%20Shudong&rft.date=2023-09-01&rft.volume=163&rft.spage=107152&rft.epage=107152&rft.pages=107152-107152&rft.artnum=107152&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.107152&rft_dat=%3Cproquest_cross%3E2849934217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849934217&rft_id=info:pmid/37364529&rfr_iscdi=true |