Loading…

scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data

AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopul...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine 2023-09, Vol.163, p.107152-107152, Article 107152
Main Authors: Wang, Shudong, Zhang, Yu, Zhang, Yulin, Wu, Wenhao, Ye, Lan, Li, YunYin, Su, Jionglong, Pang, Shanchen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783
cites cdi_FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783
container_end_page 107152
container_issue
container_start_page 107152
container_title Computers in biology and medicine
container_volume 163
creator Wang, Shudong
Zhang, Yu
Zhang, Yulin
Wu, Wenhao
Ye, Lan
Li, YunYin
Su, Jionglong
Pang, Shanchen
description AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.
doi_str_mv 10.1016/j.compbiomed.2023.107152
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2830220882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482523006170</els_id><sourcerecordid>2849934217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EotvCX0CWuHDJMraTOOGAtKygRapAonDF8tqTxYsTp3ayUv89jrYFqSdOlsbPO1_vEEIZrBmw-u1hbUI_7lzo0a45cJHDklX8CVmxRrYFVKJ8SlYADIqy4dUZOU_pAAAlCHhOzoQUdVnxdkV-JrO5udy-o5uBaqvHyR2RJteP3nUOLd1HPf6iJgzH4OfJhYH2waKnXYjU-DlNGN2wz4ph77Ew6D399mVTJLylVk_6BXnWaZ_w5f17QX58-vh9e1Vcf738vN1cF6as5FQYU7dVbfIEnW2hbaq6Msbond01otYt53WpQQK30qCUYidL1qGwJrOV4LIRF-TNKe8Yw-2MaVK9S0s3esAwJ8UbAZxD0_CMvn6EHsIch9xdpsq2FSVnMlPNiTIxpBSxU2N0vY53ioFaPFAH9c8DtXigTh5k6av7AvNu-XsQPiw9Ax9OAOaNHB1GlYzDwaB1Ec2kbHD_U-X9oyTGu8EZ7X_jHaa_MzGVuAJ1s9zCcgpcANRMgvgDoFewNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849934217</pqid></control><display><type>article</type><title>scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data</title><source>Elsevier</source><creator>Wang, Shudong ; Zhang, Yu ; Zhang, Yulin ; Wu, Wenhao ; Ye, Lan ; Li, YunYin ; Su, Jionglong ; Pang, Shanchen</creator><creatorcontrib>Wang, Shudong ; Zhang, Yu ; Zhang, Yulin ; Wu, Wenhao ; Ye, Lan ; Li, YunYin ; Su, Jionglong ; Pang, Shanchen</creatorcontrib><description>AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2023.107152</identifier><identifier>PMID: 37364529</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Bioinformatics ; Biology ; Cells ; Clustering ; Computational biology ; Computers ; Convolution ; Datasets ; Deep learning ; Gene expression ; Gene sequencing ; Graph convolution ; Graphs ; Heterogeneity ; Internal Medicine ; Machine learning ; Medical research ; Methods ; Neural networks ; Other ; Ribonucleic acid ; RNA ; ScRNA-seq ; Source code ; Subpopulations</subject><ispartof>Computers in biology and medicine, 2023-09, Vol.163, p.107152-107152, Article 107152</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><rights>2023. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783</citedby><cites>FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783</cites><orcidid>0009-0003-7914-6159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37364529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shudong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Ye, Lan</creatorcontrib><creatorcontrib>Li, YunYin</creatorcontrib><creatorcontrib>Su, Jionglong</creatorcontrib><creatorcontrib>Pang, Shanchen</creatorcontrib><title>scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.</description><subject>Bioinformatics</subject><subject>Biology</subject><subject>Cells</subject><subject>Clustering</subject><subject>Computational biology</subject><subject>Computers</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Graph convolution</subject><subject>Graphs</subject><subject>Heterogeneity</subject><subject>Internal Medicine</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Other</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>ScRNA-seq</subject><subject>Source code</subject><subject>Subpopulations</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkk1v1DAQhi0EotvCX0CWuHDJMraTOOGAtKygRapAonDF8tqTxYsTp3ayUv89jrYFqSdOlsbPO1_vEEIZrBmw-u1hbUI_7lzo0a45cJHDklX8CVmxRrYFVKJ8SlYADIqy4dUZOU_pAAAlCHhOzoQUdVnxdkV-JrO5udy-o5uBaqvHyR2RJteP3nUOLd1HPf6iJgzH4OfJhYH2waKnXYjU-DlNGN2wz4ph77Ew6D399mVTJLylVk_6BXnWaZ_w5f17QX58-vh9e1Vcf738vN1cF6as5FQYU7dVbfIEnW2hbaq6Msbond01otYt53WpQQK30qCUYidL1qGwJrOV4LIRF-TNKe8Yw-2MaVK9S0s3esAwJ8UbAZxD0_CMvn6EHsIch9xdpsq2FSVnMlPNiTIxpBSxU2N0vY53ioFaPFAH9c8DtXigTh5k6av7AvNu-XsQPiw9Ax9OAOaNHB1GlYzDwaB1Ec2kbHD_U-X9oyTGu8EZ7X_jHaa_MzGVuAJ1s9zCcgpcANRMgvgDoFewNQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Wang, Shudong</creator><creator>Zhang, Yu</creator><creator>Zhang, Yulin</creator><creator>Wu, Wenhao</creator><creator>Ye, Lan</creator><creator>Li, YunYin</creator><creator>Su, Jionglong</creator><creator>Pang, Shanchen</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0003-7914-6159</orcidid></search><sort><creationdate>20230901</creationdate><title>scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data</title><author>Wang, Shudong ; Zhang, Yu ; Zhang, Yulin ; Wu, Wenhao ; Ye, Lan ; Li, YunYin ; Su, Jionglong ; Pang, Shanchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bioinformatics</topic><topic>Biology</topic><topic>Cells</topic><topic>Clustering</topic><topic>Computational biology</topic><topic>Computers</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Graph convolution</topic><topic>Graphs</topic><topic>Heterogeneity</topic><topic>Internal Medicine</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Other</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>ScRNA-seq</topic><topic>Source code</topic><topic>Subpopulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shudong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhang, Yulin</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Ye, Lan</creatorcontrib><creatorcontrib>Li, YunYin</creatorcontrib><creatorcontrib>Su, Jionglong</creatorcontrib><creatorcontrib>Pang, Shanchen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Hospital Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shudong</au><au>Zhang, Yu</au><au>Zhang, Yulin</au><au>Wu, Wenhao</au><au>Ye, Lan</au><au>Li, YunYin</au><au>Su, Jionglong</au><au>Pang, Shanchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>163</volume><spage>107152</spage><epage>107152</epage><pages>107152-107152</pages><artnum>107152</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>AbstractSingle-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>37364529</pmid><doi>10.1016/j.compbiomed.2023.107152</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0003-7914-6159</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2023-09, Vol.163, p.107152-107152, Article 107152
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2830220882
source Elsevier
subjects Bioinformatics
Biology
Cells
Clustering
Computational biology
Computers
Convolution
Datasets
Deep learning
Gene expression
Gene sequencing
Graph convolution
Graphs
Heterogeneity
Internal Medicine
Machine learning
Medical research
Methods
Neural networks
Other
Ribonucleic acid
RNA
ScRNA-seq
Source code
Subpopulations
title scASGC: An adaptive simplified graph convolution model for clustering single-cell RNA-seq data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T13%3A30%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=scASGC:%20An%20adaptive%20simplified%20graph%20convolution%20model%20for%20clustering%20single-cell%20RNA-seq%20data&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Wang,%20Shudong&rft.date=2023-09-01&rft.volume=163&rft.spage=107152&rft.epage=107152&rft.pages=107152-107152&rft.artnum=107152&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2023.107152&rft_dat=%3Cproquest_cross%3E2849934217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-cc6956c152fd9098565cccabdb836a92264a0702d7ce773b741fe3dc909532783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849934217&rft_id=info:pmid/37364529&rfr_iscdi=true