Loading…

Inverse Design Method for Centrifugal Impellers and Comparison with Numerical Simulation Tools

A process that enables us to improve the design of 2D centrifugal and helico-centrifugal pumps is presented. First of all, the definition of the impeller geometry as well as the analysis of its global performances are carried out starting from the mean streamline method (1D), based at the same time...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computational fluid dynamics 2004-02, Vol.18 (2), p.101-110
Main Authors: Asuaje, Miguel, Bakir†, Farid, Kouidri‡, SmaÏne, Rey¶, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A process that enables us to improve the design of 2D centrifugal and helico-centrifugal pumps is presented. First of all, the definition of the impeller geometry as well as the analysis of its global performances are carried out starting from the mean streamline method (1D), based at the same time on ideal models and experimental correlations. A second stage of optimisation is achieved from a quasi three-dimensional (Q3D) method, by studying the meridional flow and blade-to-blade flow. Finally, 3D flow solution is performed by CFD tools. Nowadays, we have a group of tools which help the designers improve the performance of new machines. These digital tools are built around two computer programs, HELIOX developed for design and performance analysis in any centrifugal and mixed flow pumps equipped with volute or deswirl vanes, and also the module REMIX that gathers the meridional flow analysis and the simplified blade-to-blade one. To validate this procedure, a centrifugal machine with a volute (NS32) was modified and studied with it, and the results were simultaneously compared with the previous trial runs and with the software CFX-BladeGEN+ and CFX-TASCflow. The results for a machine equipped with a deswirl (VM51) are also presented.
ISSN:1061-8562
1029-0257
DOI:10.1080/10618560310001634249