Loading…
Nature-Inspired Routing and Wavelength Assignment Algorithms for Optical Circuit-Switched Polymorphic Networks
Polymorphic optical networks simultaneously support several optical switching paradigms over a single physical network. In this way, they provide service differentiation at the optical layer by employing the most appropriate paradigm for each service. One type of such architecture is the optical cir...
Saved in:
Published in: | Fiber and integrated optics 2004, Vol.23 (2-3), p.157-170 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polymorphic optical networks simultaneously support several optical switching paradigms over a single physical network. In this way, they provide service differentiation at the optical layer by employing the most appropriate paradigm for each service. One type of such architecture is the optical circuit-switched polymorphic network (OCSPN), which combines optical circuit switching paradigms with different grades of dynamism. The performance of this network relies on the utilization of efficient routing and wavelength assignment (RWA) algorithms. In this article, we review the fundamentals of OCSPNs and present a set of efficient RWA algorithms based on ant colony optimization and genetic algorithms. |
---|---|
ISSN: | 0146-8030 1096-4681 |
DOI: | 10.1080/01468030490269152 |