Loading…
Frequency-domain engineering of bright squeezed vacuum for continuous-variable quantum information
Multimode bright squeezed vacuum is a non-classical state of light hosting a macroscopic photon number while offering promising capacity for encoding quantum information in its spectral degree of freedom. Here, we employ an accurate model for parametric down-conversion in the high-gain regime and us...
Saved in:
Published in: | Optics express 2023-06, Vol.31 (12), p.20387-20397 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multimode bright squeezed vacuum is a non-classical state of light hosting a macroscopic photon number while offering promising capacity for encoding quantum information in its spectral degree of freedom. Here, we employ an accurate model for parametric down-conversion in the high-gain regime and use nonlinear holography to design quantum correlations of bright squeezed vacuum in the frequency domain. We propose the design of quantum correlations over two-dimensional lattice geometries that are all-optically controlled, paving the way toward continuous-variable cluster state generation on an ultrafast timescale. Specifically, we investigate the generation of a square cluster state in the frequency domain and calculate its covariance matrix and the quantum nullifier uncertainties, that exhibit squeezing below the vacuum noise level. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.489606 |