Loading…
Ion irradiation of monolayer graphene-Nd:YAG hybrid waveguides: fabrication and laser
Hybrid waveguides consisting of two-dimensional layered materials pad on the surface of optical waveguides suffer from a nonuniform and loose contact between the two-dimensional material and the waveguide, which can reduce the efficiency of the pulsed laser. Here, we present high-performance passive...
Saved in:
Published in: | Optics express 2023-05, Vol.31 (11), p.17769-17781 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hybrid waveguides consisting of two-dimensional layered materials pad on the surface of optical waveguides suffer from a nonuniform and loose contact between the two-dimensional material and the waveguide, which can reduce the efficiency of the pulsed laser. Here, we present high-performance passively Q-switched pulsed lasers in three distinct structures of monolayer graphene-Nd:YAG hybrid waveguides irradiated by energetic ions. The ion irradiation enables the monolayer graphene a tight contact and strong coupling with the waveguide. As a result, Q-switched pulsed lasers with narrow pulse width and high repetition rate are obtained in three designed hybrid waveguides. The narrowest pulse width is 43.6 ns, provided by the ion-irradiated Y-branch hybrid waveguide. This study paves the way toward developing on-chip laser sources based on hybrid waveguides by using ion irradiation. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.491694 |