Loading…
Investigation of a System Identification Methodology in the Context of the ASCE Benchmark Problem
This article briefly presents the theory for a system identification and damage detection algorithm for linear systems, and discusses the effectiveness of such a methodology in the context of a benchmark problem that was proposed by the ASCE Task Group in Health Monitoring. The proposed approach has...
Saved in:
Published in: | Journal of engineering mechanics 2004-01, Vol.130 (1), p.71-84 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article briefly presents the theory for a system identification and damage detection algorithm for linear systems, and discusses the effectiveness of such a methodology in the context of a benchmark problem that was proposed by the ASCE Task Group in Health Monitoring. The proposed approach has two well-defined phases: (1) identification of a state space model using the Observer/Kalman filter identification algorithm, the eigensystem realization algorithm, and a nonlinear optimization approach based on sequential quadratic programming techniques, and (2) identification of the second-order dynamic model parameters from the realized state space model. Structural changes (damage) are characterized by investigating the changes in the second-order parameters of the "reference" and "damaged" models. An extensive numerical analysis, along with the underlying theory, is presented in order to assess the advantages and disadvantages of the proposed identification methodology. |
---|---|
ISSN: | 0733-9399 1943-7889 |
DOI: | 10.1061/(ASCE)0733-9399(2004)130:1(71) |