Loading…

Fast matched field processing

It is shown how the computational burden of source localization by matched field processing (MFP) can be significantly reduced (20 to 30 times) by expressing the correlation in terms of a discrete Fourier transform and using the fast Fourier transform (FFT) algorithm. The price paid to achieve incre...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of oceanic engineering 1993-01, Vol.18 (1), p.1-5
Main Authors: Aravindan, S., Ramachandran, N., Naidu, P.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It is shown how the computational burden of source localization by matched field processing (MFP) can be significantly reduced (20 to 30 times) by expressing the correlation in terms of a discrete Fourier transform and using the fast Fourier transform (FFT) algorithm. The price paid to achieve increased speed is in the form of quantization phase errors. It is shown through analysis and computer simulation that the quantization errors reduce the source peak height, depending upon the size of DFT. The proposed fast MFP works for range localization only. However, the depth estimation is possible by repeated application of the above algorithm for different depths.< >
ISSN:0364-9059
1558-1691
DOI:10.1109/48.211502