Loading…
Generalized mean-field theory for metals and semiconductors with magnetic impurities
Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of generalized mean-field theory (GMFT) based on calculating and analyzing distribution functions F ( H ) of random local magn...
Saved in:
Published in: | Journal of magnetism and magnetic materials 2005-05, Vol.293 (2), p.793-811 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583 |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583 |
container_end_page | 811 |
container_issue | 2 |
container_start_page | 793 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 293 |
creator | Meilikhov, E.Z. Farzetdinova, R.M. |
description | Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of
generalized mean-field theory (GMFT) based on calculating and analyzing
distribution functions
F
(
H
)
of random
local magnetic fields
H. For
concentrated systems (where the random local field is produced by a number of interacting magnetic moments), the function
F
(
H
)
turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution only—it's width and maximum position. For
rarefied systems (where the average distance between interacting moments is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities. |
doi_str_mv | 10.1016/j.jmmm.2004.12.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28320186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885304018402</els_id><sourcerecordid>28320186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhTOARCn8ASZPbAl3juMEiQVVUJAqsZTZcp0zdRUnxXZA5deTqsxMTzq976T3ZdkNQoGA8m5X7Lz3BQcQBfICQJ5lMyhB5E1TlRfZZYw7AEDRyFm2XlJPQXfuh1rmSfe5ddS1LG1pCAdmhzBdk-4i033LInlnhr4dTRpCZN8ubZnXHz0lZ5jz-zG45CheZed2Quj6L-fZ-_PTevGSr96Wr4vHVW7KElNuLWAtaijrDVSSQ21qXd3LSkoDnGON0oJpLZJApI02KIS1iEaUNRpZNeU8uz393Yfhc6SYlHfRUNfpnoYxKt6UHLCRU5GfiiYMMQayah-c1-GgENRRmtqpozR1lKaQq0naBD2cIJomfDkKKhpHvaHWBTJJtYP7D_8FwtB4IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28320186</pqid></control><display><type>article</type><title>Generalized mean-field theory for metals and semiconductors with magnetic impurities</title><source>ScienceDirect Journals</source><creator>Meilikhov, E.Z. ; Farzetdinova, R.M.</creator><creatorcontrib>Meilikhov, E.Z. ; Farzetdinova, R.M.</creatorcontrib><description>Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of
generalized mean-field theory (GMFT) based on calculating and analyzing
distribution functions
F
(
H
)
of random
local magnetic fields
H. For
concentrated systems (where the random local field is produced by a number of interacting magnetic moments), the function
F
(
H
)
turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution only—it's width and maximum position. For
rarefied systems (where the average distance between interacting moments is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2004.12.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Generalized mean-field theory ; Magnetic impurities ; Magnetic phase diagram ; Magnetic semiconductors ; Metal alloys</subject><ispartof>Journal of magnetism and magnetic materials, 2005-05, Vol.293 (2), p.793-811</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583</citedby><cites>FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Meilikhov, E.Z.</creatorcontrib><creatorcontrib>Farzetdinova, R.M.</creatorcontrib><title>Generalized mean-field theory for metals and semiconductors with magnetic impurities</title><title>Journal of magnetism and magnetic materials</title><description>Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of
generalized mean-field theory (GMFT) based on calculating and analyzing
distribution functions
F
(
H
)
of random
local magnetic fields
H. For
concentrated systems (where the random local field is produced by a number of interacting magnetic moments), the function
F
(
H
)
turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution only—it's width and maximum position. For
rarefied systems (where the average distance between interacting moments is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities.</description><subject>Generalized mean-field theory</subject><subject>Magnetic impurities</subject><subject>Magnetic phase diagram</subject><subject>Magnetic semiconductors</subject><subject>Metal alloys</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhTOARCn8ASZPbAl3juMEiQVVUJAqsZTZcp0zdRUnxXZA5deTqsxMTzq976T3ZdkNQoGA8m5X7Lz3BQcQBfICQJ5lMyhB5E1TlRfZZYw7AEDRyFm2XlJPQXfuh1rmSfe5ddS1LG1pCAdmhzBdk-4i033LInlnhr4dTRpCZN8ubZnXHz0lZ5jz-zG45CheZed2Quj6L-fZ-_PTevGSr96Wr4vHVW7KElNuLWAtaijrDVSSQ21qXd3LSkoDnGON0oJpLZJApI02KIS1iEaUNRpZNeU8uz393Yfhc6SYlHfRUNfpnoYxKt6UHLCRU5GfiiYMMQayah-c1-GgENRRmtqpozR1lKaQq0naBD2cIJomfDkKKhpHvaHWBTJJtYP7D_8FwtB4IA</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Meilikhov, E.Z.</creator><creator>Farzetdinova, R.M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050501</creationdate><title>Generalized mean-field theory for metals and semiconductors with magnetic impurities</title><author>Meilikhov, E.Z. ; Farzetdinova, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Generalized mean-field theory</topic><topic>Magnetic impurities</topic><topic>Magnetic phase diagram</topic><topic>Magnetic semiconductors</topic><topic>Metal alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meilikhov, E.Z.</creatorcontrib><creatorcontrib>Farzetdinova, R.M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meilikhov, E.Z.</au><au>Farzetdinova, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized mean-field theory for metals and semiconductors with magnetic impurities</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>293</volume><issue>2</issue><spage>793</spage><epage>811</epage><pages>793-811</pages><issn>0304-8853</issn><abstract>Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of
generalized mean-field theory (GMFT) based on calculating and analyzing
distribution functions
F
(
H
)
of random
local magnetic fields
H. For
concentrated systems (where the random local field is produced by a number of interacting magnetic moments), the function
F
(
H
)
turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution only—it's width and maximum position. For
rarefied systems (where the average distance between interacting moments is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2004.12.006</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2005-05, Vol.293 (2), p.793-811 |
issn | 0304-8853 |
language | eng |
recordid | cdi_proquest_miscellaneous_28320186 |
source | ScienceDirect Journals |
subjects | Generalized mean-field theory Magnetic impurities Magnetic phase diagram Magnetic semiconductors Metal alloys |
title | Generalized mean-field theory for metals and semiconductors with magnetic impurities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20mean-field%20theory%20for%20metals%20and%20semiconductors%20with%20magnetic%20impurities&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Meilikhov,%20E.Z.&rft.date=2005-05-01&rft.volume=293&rft.issue=2&rft.spage=793&rft.epage=811&rft.pages=793-811&rft.issn=0304-8853&rft_id=info:doi/10.1016/j.jmmm.2004.12.006&rft_dat=%3Cproquest_cross%3E28320186%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28320186&rft_id=info:pmid/&rfr_iscdi=true |