Loading…

Generalized mean-field theory for metals and semiconductors with magnetic impurities

Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of generalized mean-field theory (GMFT) based on calculating and analyzing distribution functions F ( H ) of random local magn...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2005-05, Vol.293 (2), p.793-811
Main Authors: Meilikhov, E.Z., Farzetdinova, R.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583
cites cdi_FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583
container_end_page 811
container_issue 2
container_start_page 793
container_title Journal of magnetism and magnetic materials
container_volume 293
creator Meilikhov, E.Z.
Farzetdinova, R.M.
description Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of generalized mean-field theory (GMFT) based on calculating and analyzing distribution functions F ( H ) of random local magnetic fields H. For concentrated systems (where the random local field is produced by a number of interacting magnetic moments), the function F ( H ) turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution only—it's width and maximum position. For rarefied systems (where the average distance between interacting moments is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities.
doi_str_mv 10.1016/j.jmmm.2004.12.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28320186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885304018402</els_id><sourcerecordid>28320186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhTOARCn8ASZPbAl3juMEiQVVUJAqsZTZcp0zdRUnxXZA5deTqsxMTzq976T3ZdkNQoGA8m5X7Lz3BQcQBfICQJ5lMyhB5E1TlRfZZYw7AEDRyFm2XlJPQXfuh1rmSfe5ddS1LG1pCAdmhzBdk-4i033LInlnhr4dTRpCZN8ubZnXHz0lZ5jz-zG45CheZed2Quj6L-fZ-_PTevGSr96Wr4vHVW7KElNuLWAtaijrDVSSQ21qXd3LSkoDnGON0oJpLZJApI02KIS1iEaUNRpZNeU8uz393Yfhc6SYlHfRUNfpnoYxKt6UHLCRU5GfiiYMMQayah-c1-GgENRRmtqpozR1lKaQq0naBD2cIJomfDkKKhpHvaHWBTJJtYP7D_8FwtB4IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28320186</pqid></control><display><type>article</type><title>Generalized mean-field theory for metals and semiconductors with magnetic impurities</title><source>ScienceDirect Journals</source><creator>Meilikhov, E.Z. ; Farzetdinova, R.M.</creator><creatorcontrib>Meilikhov, E.Z. ; Farzetdinova, R.M.</creatorcontrib><description>Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of generalized mean-field theory (GMFT) based on calculating and analyzing distribution functions F ( H ) of random local magnetic fields H. For concentrated systems (where the random local field is produced by a number of interacting magnetic moments), the function F ( H ) turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution only—it's width and maximum position. For rarefied systems (where the average distance between interacting moments is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities.</description><identifier>ISSN: 0304-8853</identifier><identifier>DOI: 10.1016/j.jmmm.2004.12.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Generalized mean-field theory ; Magnetic impurities ; Magnetic phase diagram ; Magnetic semiconductors ; Metal alloys</subject><ispartof>Journal of magnetism and magnetic materials, 2005-05, Vol.293 (2), p.793-811</ispartof><rights>2005 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583</citedby><cites>FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Meilikhov, E.Z.</creatorcontrib><creatorcontrib>Farzetdinova, R.M.</creatorcontrib><title>Generalized mean-field theory for metals and semiconductors with magnetic impurities</title><title>Journal of magnetism and magnetic materials</title><description>Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of generalized mean-field theory (GMFT) based on calculating and analyzing distribution functions F ( H ) of random local magnetic fields H. For concentrated systems (where the random local field is produced by a number of interacting magnetic moments), the function F ( H ) turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution only—it's width and maximum position. For rarefied systems (where the average distance between interacting moments is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities.</description><subject>Generalized mean-field theory</subject><subject>Magnetic impurities</subject><subject>Magnetic phase diagram</subject><subject>Magnetic semiconductors</subject><subject>Metal alloys</subject><issn>0304-8853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhTOARCn8ASZPbAl3juMEiQVVUJAqsZTZcp0zdRUnxXZA5deTqsxMTzq976T3ZdkNQoGA8m5X7Lz3BQcQBfICQJ5lMyhB5E1TlRfZZYw7AEDRyFm2XlJPQXfuh1rmSfe5ddS1LG1pCAdmhzBdk-4i033LInlnhr4dTRpCZN8ubZnXHz0lZ5jz-zG45CheZed2Quj6L-fZ-_PTevGSr96Wr4vHVW7KElNuLWAtaijrDVSSQ21qXd3LSkoDnGON0oJpLZJApI02KIS1iEaUNRpZNeU8uz393Yfhc6SYlHfRUNfpnoYxKt6UHLCRU5GfiiYMMQayah-c1-GgENRRmtqpozR1lKaQq0naBD2cIJomfDkKKhpHvaHWBTJJtYP7D_8FwtB4IA</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Meilikhov, E.Z.</creator><creator>Farzetdinova, R.M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050501</creationdate><title>Generalized mean-field theory for metals and semiconductors with magnetic impurities</title><author>Meilikhov, E.Z. ; Farzetdinova, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Generalized mean-field theory</topic><topic>Magnetic impurities</topic><topic>Magnetic phase diagram</topic><topic>Magnetic semiconductors</topic><topic>Metal alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meilikhov, E.Z.</creatorcontrib><creatorcontrib>Farzetdinova, R.M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meilikhov, E.Z.</au><au>Farzetdinova, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized mean-field theory for metals and semiconductors with magnetic impurities</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>293</volume><issue>2</issue><spage>793</spage><epage>811</epage><pages>793-811</pages><issn>0304-8853</issn><abstract>Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or Bloembergen–Rowland-type interaction are considered in the framework of generalized mean-field theory (GMFT) based on calculating and analyzing distribution functions F ( H ) of random local magnetic fields H. For concentrated systems (where the random local field is produced by a number of interacting magnetic moments), the function F ( H ) turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution only—it's width and maximum position. For rarefied systems (where the average distance between interacting moments is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2004.12.006</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2005-05, Vol.293 (2), p.793-811
issn 0304-8853
language eng
recordid cdi_proquest_miscellaneous_28320186
source ScienceDirect Journals
subjects Generalized mean-field theory
Magnetic impurities
Magnetic phase diagram
Magnetic semiconductors
Metal alloys
title Generalized mean-field theory for metals and semiconductors with magnetic impurities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20mean-field%20theory%20for%20metals%20and%20semiconductors%20with%20magnetic%20impurities&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Meilikhov,%20E.Z.&rft.date=2005-05-01&rft.volume=293&rft.issue=2&rft.spage=793&rft.epage=811&rft.pages=793-811&rft.issn=0304-8853&rft_id=info:doi/10.1016/j.jmmm.2004.12.006&rft_dat=%3Cproquest_cross%3E28320186%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-ff01747037b056207c7a596566c0221716f0cdf1e411ebac144ff11c4371c6583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28320186&rft_id=info:pmid/&rfr_iscdi=true