Loading…
Identification of Commercial Antimalarial Herbal Drugs Using Laser-Induced Autofluorescence Technique and Multivariate Algorithms
In malaria-prone developing countries the integrity of Anti-Malarial Herbal Drugs (AMHDs) which are easily preferred for treatment can be compromised. Currently, existing techniques for identifying AMHDs are destructive. We report on the use of non-destructive and sensitive technique, Laser-Induced-...
Saved in:
Published in: | Journal of fluorescence 2024-03, Vol.34 (2), p.855-864 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In malaria-prone developing countries the integrity of Anti-Malarial Herbal Drugs (AMHDs) which are easily preferred for treatment can be compromised. Currently, existing techniques for identifying AMHDs are destructive. We report on the use of non-destructive and sensitive technique, Laser-Induced-Autofluorescence (LIAF) in combination with multivariate algorithms for identification of AMHDs. The LIAF spectra were recorded from commercially prepared decoction AMHDs purchased from accredited pharmacy shop in Ghana. Deconvolution of the LIAF spectra revealed secondary metabolites belonging to derivatives of alkaloids and classes of phenolic compounds of the AMHDs. Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA) were able to discriminate the AMHDs base on their physicochemical properties. Based on two principal components, the PCA- QDA (Quadratic Discriminant Analysis), PCA-LDA (Linear Discriminant Analysis), PCA-SVM (Support Vector Machine) and PCA-KNN (K-Nearest Neighbour) models were developed with an accuracy performance of 99.0, 99.7, 100.0, and 100%, respectively, in identifying AMHDs. PCA-SVM and PCA-KNN provided the best classification and stability performance. The LIAF technique in combination with multivariate techniques may offer a non-destructive and viable tool for AMHDs identification. |
---|---|
ISSN: | 1053-0509 1573-4994 |
DOI: | 10.1007/s10895-023-03309-w |