Loading…
Spectrum collapse in a 7-core Yb-doped fiber laser with an array of fs-inscribed fiber Bragg gratings
Femtosecond inscription of fiber Bragg gratings (FBGs) in each core of a cladding-pumped seven-core Yb-doped fiber enables efficient (≈70%) 1064-nm lasing in a robust all-fiber scheme with ≈33 W power, nearly the same for uncoupled and coupled cores. However, the output spectrum is quite different:...
Saved in:
Published in: | Optics letters 2023-07, Vol.48 (13), p.3603-3606 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Femtosecond inscription of fiber Bragg gratings (FBGs) in each core of a cladding-pumped seven-core Yb-doped fiber enables efficient (≈70%) 1064-nm lasing in a robust all-fiber scheme with ≈33 W power, nearly the same for uncoupled and coupled cores. However, the output spectrum is quite different: without coupling, seven individual lines corresponding to the in-core FBG reflection spectra sum up into a broad (0.22 nm) total spectrum, whereas the multiline spectrum collapses into a single narrow line at strong coupling. The developed model shows that the coupled-core laser generates coherent superposition of supermodes at the wavelength corresponding to the geometric mean of the individual FBG spectra, whereas the generated laser line broadens, with a power (0.04-0.12 nm) like the single-core mode of a seven-times larger effective area. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.493139 |