Loading…

Experimental Implementation of the Optical Fractional Fourier Transform in the Time-Frequency Domain

The fractional Fourier transform (FrFT), a fundamental operation in physics that corresponds to a rotation of phase space by any angle, is also an indispensable tool employed in digital signal processing for noise reduction. Processing of optical signals in their time-frequency degree of freedom byp...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2023-06, Vol.130 (24), p.240801-240801, Article 240801
Main Authors: Niewelt, Bartosz, Jastrzębski, Marcin, Kurzyna, Stanisław, Nowosielski, Jan, Wasilewski, Wojciech, Mazelanik, Mateusz, Parniak, Michał
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-5e8a2e6508bf06ea183e02d0c4a8c439901ea0a8c49bae7853621f74b52305283
cites cdi_FETCH-LOGICAL-c359t-5e8a2e6508bf06ea183e02d0c4a8c439901ea0a8c49bae7853621f74b52305283
container_end_page 240801
container_issue 24
container_start_page 240801
container_title Physical review letters
container_volume 130
creator Niewelt, Bartosz
Jastrzębski, Marcin
Kurzyna, Stanisław
Nowosielski, Jan
Wasilewski, Wojciech
Mazelanik, Mateusz
Parniak, Michał
description The fractional Fourier transform (FrFT), a fundamental operation in physics that corresponds to a rotation of phase space by any angle, is also an indispensable tool employed in digital signal processing for noise reduction. Processing of optical signals in their time-frequency degree of freedom bypasses the digitization step and presents an opportunity to enhance many protocols in quantum and classical communication, sensing, and computing. In this Letter, we present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system with processing capabilities. Our scheme performs the operation by imposing programmable interleaved spectral and temporal phases. We have verified the FrFT by analyses of chroncyclic Wigner functions measured via a shot-noise limited homodyne detector. Our results hold prospects for achieving temporal-mode sorting, processing, and superresolved parameter estimation.
doi_str_mv 10.1103/PhysRevLett.130.240801
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2832577039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2832577039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5e8a2e6508bf06ea183e02d0c4a8c439901ea0a8c49bae7853621f74b52305283</originalsourceid><addsrcrecordid>eNpNkE9PwzAMxSMEYmPwFaYeuXQ4SdskRzQ2mDRpCI1zlXauVtR_JCli3550G4iTn-z3bOtHyJTCjFLgD6_7g33DrzU6N6McZiwCCfSCjCkIFQpKo0syBuA0VABiRG6s_QAAyhJ5TUZccAURlWOyW3x3aMoaG6erYFV3FR61K9smaIvA7THYdK7M_XRpdD70B9n2pkQTbI1ubNGaOiibo3frV4VLg589NvkheGprXTa35KrQlcW7c52Q9-ViO38J15vn1fxxHeY8Vi6MUWqGSQwyKyBBTSVHYDvIIy3ziCsFFDUMWmUahYx5wmghoixmHGIm-YTcn_Z2pvUPWJfWpc2xqnSDbW9Tb2GxEMCVtyYna25aaw0WaecpaHNIKaQD4fQf4dQTTk-EfXB6vtFnNe7-Yr9I-Q_InHrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2832577039</pqid></control><display><type>article</type><title>Experimental Implementation of the Optical Fractional Fourier Transform in the Time-Frequency Domain</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Niewelt, Bartosz ; Jastrzębski, Marcin ; Kurzyna, Stanisław ; Nowosielski, Jan ; Wasilewski, Wojciech ; Mazelanik, Mateusz ; Parniak, Michał</creator><creatorcontrib>Niewelt, Bartosz ; Jastrzębski, Marcin ; Kurzyna, Stanisław ; Nowosielski, Jan ; Wasilewski, Wojciech ; Mazelanik, Mateusz ; Parniak, Michał</creatorcontrib><description>The fractional Fourier transform (FrFT), a fundamental operation in physics that corresponds to a rotation of phase space by any angle, is also an indispensable tool employed in digital signal processing for noise reduction. Processing of optical signals in their time-frequency degree of freedom bypasses the digitization step and presents an opportunity to enhance many protocols in quantum and classical communication, sensing, and computing. In this Letter, we present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system with processing capabilities. Our scheme performs the operation by imposing programmable interleaved spectral and temporal phases. We have verified the FrFT by analyses of chroncyclic Wigner functions measured via a shot-noise limited homodyne detector. Our results hold prospects for achieving temporal-mode sorting, processing, and superresolved parameter estimation.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.130.240801</identifier><identifier>PMID: 37390418</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2023-06, Vol.130 (24), p.240801-240801, Article 240801</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5e8a2e6508bf06ea183e02d0c4a8c439901ea0a8c49bae7853621f74b52305283</citedby><cites>FETCH-LOGICAL-c359t-5e8a2e6508bf06ea183e02d0c4a8c439901ea0a8c49bae7853621f74b52305283</cites><orcidid>0009-0005-8710-8077 ; 0009-0006-6165-3568 ; 0000-0002-6849-4671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37390418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niewelt, Bartosz</creatorcontrib><creatorcontrib>Jastrzębski, Marcin</creatorcontrib><creatorcontrib>Kurzyna, Stanisław</creatorcontrib><creatorcontrib>Nowosielski, Jan</creatorcontrib><creatorcontrib>Wasilewski, Wojciech</creatorcontrib><creatorcontrib>Mazelanik, Mateusz</creatorcontrib><creatorcontrib>Parniak, Michał</creatorcontrib><title>Experimental Implementation of the Optical Fractional Fourier Transform in the Time-Frequency Domain</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The fractional Fourier transform (FrFT), a fundamental operation in physics that corresponds to a rotation of phase space by any angle, is also an indispensable tool employed in digital signal processing for noise reduction. Processing of optical signals in their time-frequency degree of freedom bypasses the digitization step and presents an opportunity to enhance many protocols in quantum and classical communication, sensing, and computing. In this Letter, we present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system with processing capabilities. Our scheme performs the operation by imposing programmable interleaved spectral and temporal phases. We have verified the FrFT by analyses of chroncyclic Wigner functions measured via a shot-noise limited homodyne detector. Our results hold prospects for achieving temporal-mode sorting, processing, and superresolved parameter estimation.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9PwzAMxSMEYmPwFaYeuXQ4SdskRzQ2mDRpCI1zlXauVtR_JCli3550G4iTn-z3bOtHyJTCjFLgD6_7g33DrzU6N6McZiwCCfSCjCkIFQpKo0syBuA0VABiRG6s_QAAyhJ5TUZccAURlWOyW3x3aMoaG6erYFV3FR61K9smaIvA7THYdK7M_XRpdD70B9n2pkQTbI1ubNGaOiibo3frV4VLg589NvkheGprXTa35KrQlcW7c52Q9-ViO38J15vn1fxxHeY8Vi6MUWqGSQwyKyBBTSVHYDvIIy3ziCsFFDUMWmUahYx5wmghoixmHGIm-YTcn_Z2pvUPWJfWpc2xqnSDbW9Tb2GxEMCVtyYna25aaw0WaecpaHNIKaQD4fQf4dQTTk-EfXB6vtFnNe7-Yr9I-Q_InHrQ</recordid><startdate>20230616</startdate><enddate>20230616</enddate><creator>Niewelt, Bartosz</creator><creator>Jastrzębski, Marcin</creator><creator>Kurzyna, Stanisław</creator><creator>Nowosielski, Jan</creator><creator>Wasilewski, Wojciech</creator><creator>Mazelanik, Mateusz</creator><creator>Parniak, Michał</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0005-8710-8077</orcidid><orcidid>https://orcid.org/0009-0006-6165-3568</orcidid><orcidid>https://orcid.org/0000-0002-6849-4671</orcidid></search><sort><creationdate>20230616</creationdate><title>Experimental Implementation of the Optical Fractional Fourier Transform in the Time-Frequency Domain</title><author>Niewelt, Bartosz ; Jastrzębski, Marcin ; Kurzyna, Stanisław ; Nowosielski, Jan ; Wasilewski, Wojciech ; Mazelanik, Mateusz ; Parniak, Michał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5e8a2e6508bf06ea183e02d0c4a8c439901ea0a8c49bae7853621f74b52305283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niewelt, Bartosz</creatorcontrib><creatorcontrib>Jastrzębski, Marcin</creatorcontrib><creatorcontrib>Kurzyna, Stanisław</creatorcontrib><creatorcontrib>Nowosielski, Jan</creatorcontrib><creatorcontrib>Wasilewski, Wojciech</creatorcontrib><creatorcontrib>Mazelanik, Mateusz</creatorcontrib><creatorcontrib>Parniak, Michał</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niewelt, Bartosz</au><au>Jastrzębski, Marcin</au><au>Kurzyna, Stanisław</au><au>Nowosielski, Jan</au><au>Wasilewski, Wojciech</au><au>Mazelanik, Mateusz</au><au>Parniak, Michał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Implementation of the Optical Fractional Fourier Transform in the Time-Frequency Domain</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2023-06-16</date><risdate>2023</risdate><volume>130</volume><issue>24</issue><spage>240801</spage><epage>240801</epage><pages>240801-240801</pages><artnum>240801</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The fractional Fourier transform (FrFT), a fundamental operation in physics that corresponds to a rotation of phase space by any angle, is also an indispensable tool employed in digital signal processing for noise reduction. Processing of optical signals in their time-frequency degree of freedom bypasses the digitization step and presents an opportunity to enhance many protocols in quantum and classical communication, sensing, and computing. In this Letter, we present the experimental realization of the fractional Fourier transform in the time-frequency domain using an atomic quantum-optical memory system with processing capabilities. Our scheme performs the operation by imposing programmable interleaved spectral and temporal phases. We have verified the FrFT by analyses of chroncyclic Wigner functions measured via a shot-noise limited homodyne detector. Our results hold prospects for achieving temporal-mode sorting, processing, and superresolved parameter estimation.</abstract><cop>United States</cop><pmid>37390418</pmid><doi>10.1103/PhysRevLett.130.240801</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0005-8710-8077</orcidid><orcidid>https://orcid.org/0009-0006-6165-3568</orcidid><orcidid>https://orcid.org/0000-0002-6849-4671</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2023-06, Vol.130 (24), p.240801-240801, Article 240801
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2832577039
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Experimental Implementation of the Optical Fractional Fourier Transform in the Time-Frequency Domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Implementation%20of%20the%20Optical%20Fractional%20Fourier%20Transform%20in%20the%20Time-Frequency%20Domain&rft.jtitle=Physical%20review%20letters&rft.au=Niewelt,%20Bartosz&rft.date=2023-06-16&rft.volume=130&rft.issue=24&rft.spage=240801&rft.epage=240801&rft.pages=240801-240801&rft.artnum=240801&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.130.240801&rft_dat=%3Cproquest_cross%3E2832577039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-5e8a2e6508bf06ea183e02d0c4a8c439901ea0a8c49bae7853621f74b52305283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2832577039&rft_id=info:pmid/37390418&rfr_iscdi=true