Loading…
Neurobiochemical characteristics of arginine-rich peptides explain their potential therapeutic efficacy in neurodegenerative diseases
Neurodegenerative diseases, including Alzheimer̕ s disease (AD), Parkinson̕ s disease (PD), Huntington̕ s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) require special attention to find new potential treatment methods. This review aims to summarize the current knowledge of the relationship b...
Saved in:
Published in: | Neuropeptides (Edinburgh) 2023-10, Vol.101, p.102356-102356, Article 102356 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Neurodegenerative diseases, including Alzheimer̕ s disease (AD), Parkinson̕ s disease (PD), Huntington̕ s disease (HD), and Amyotrophic Lateral Sclerosis (ALS) require special attention to find new potential treatment methods. This review aims to summarize the current knowledge of the relationship between the biochemical properties of arginine-rich peptides (ARPs) and their neuroprotective effects to deal with the harmful effects of risk factors. It seems that ARPs have portrayed a promising and fantastic landscape for treating neurodegeneration-associated disorders. With multimodal mechanisms of action, ARPs play various unprecedented roles, including as the novel delivery platforms for entering the central nervous system (CNS), the potent antagonists for calcium influx, the invader molecules for targeting mitochondria, and the protein stabilizers. Interestingly, these peptides inhibit the proteolytic enzymes and block protein aggregation to induce pro-survival signaling pathways. ARPs also serve as the scavengers of toxic molecules and the reducers of oxidative stress agents. They also have anti-inflammatory, antimicrobial, and anti-cancer properties. Moreover, by providing an efficient nucleic acid delivery system, ARPs can play an essential role in developing various fields, including gene vaccines, gene therapy, gene editing, and imaging. ARP agents and ARP/cargo therapeutics can be raised as an emergent class of neurotherapeutics for neurodegeneration. Part of the aim of this review is to present recent advances in treating neurodegenerative diseases using ARPs as an emerging and powerful therapeutic tool. The applications and progress of ARPs-based nucleic acid delivery systems have also been discussed to highlight their usefulness as a broad-acting class of drugs.
[Display omitted] |
---|---|
ISSN: | 0143-4179 1532-2785 |
DOI: | 10.1016/j.npep.2023.102356 |