Loading…
Development and characterization of rigid packaging material using cellulose/sugarcane bagasse and natural resins
Composites developed from cellulose and natural resins have received much attention due to their low cost and positive environmental impact. Knowledge of the mechanical and degradation characteristics of cellulose based composite boards is essential to obtain indications of the strength and degradab...
Saved in:
Published in: | International journal of biological macromolecules 2023-08, Vol.246, p.125641-125641, Article 125641 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Composites developed from cellulose and natural resins have received much attention due to their low cost and positive environmental impact. Knowledge of the mechanical and degradation characteristics of cellulose based composite boards is essential to obtain indications of the strength and degradability of the resulting rigid packaging material. The composite was prepared with sugarcane bagasse and hybrid resin (a combination of epoxy and natural resin such as dammar, pine, and cashew nut shell liquid) with the mixing ratios (Bagasse fibers: Epoxy resin: Natural resin) 1:1:1.5, 1:1:1.75, and 1:1:2 using compression moulding method. Tensile strength, young's modulus, flexural strength, soil burial weight loss, microbial degradation, and CO2 evolution was determined. Cashew nut shell liquid (CNSL) resin-incorporated composite boards in the mixing ratio of 1:1:2 gave maximum flexural strength (5.10 MPa), tensile strength (3.10 MPa), and tensile modulus (0.97 MPa). The maximum degradation in soil burial test and CO2 evolution between the boards made using natural resin was found in the composite boards incorporated with CNSL resin with a mixing ratio of 1:1:1.5 were 8.30 % and 12.8 % respectively. The maximum weight loss percentage (3.49) in microbial degradation analysis was found in the composite board made using dammar resin in the mixing ratio of 1:1:1.5.
[Display omitted]
•Natural resins could partially or completely replace synthetic resins for composite fiber board applications.•Composites made by using cashew nut shell liquid resin showed new potential for rigid packaging material•Natural fiber contains cellulose accelerates the rate of decomposition in composite board•The use of biological macromolecules in the composite boards reduces agro-industrial residues and waste. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.125641 |