Loading…

Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study

This paper addresses the problem of structural health monitoring (SHM) and damage detection based on a statistical model updating methodology which utilizes the measured vibration responses of the structure without any knowledge of the input excitation. The emphasis in this paper is on the applicati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering mechanics 2004-01, Vol.130 (1), p.34-48
Main Authors: Lam, H. F, Katafygiotis, L. S, Mickleborough, N. C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a377t-eaef4cabf19a7d53db13f6ea81cf3b56c7de532ffce53dc3e98ceffb766042dc3
cites cdi_FETCH-LOGICAL-a377t-eaef4cabf19a7d53db13f6ea81cf3b56c7de532ffce53dc3e98ceffb766042dc3
container_end_page 48
container_issue 1
container_start_page 34
container_title Journal of engineering mechanics
container_volume 130
creator Lam, H. F
Katafygiotis, L. S
Mickleborough, N. C
description This paper addresses the problem of structural health monitoring (SHM) and damage detection based on a statistical model updating methodology which utilizes the measured vibration responses of the structure without any knowledge of the input excitation. The emphasis in this paper is on the application of the proposed methodology in Phase I of the benchmark study set up by the IASC-ASCE Task Group on structural health monitoring. Details of this SHM benchmark study are available on the Task Group web site at 〈http://wusceel.cive.wustl.edu/asce.shm〉. The benchmark study focuses on important issues, such as: (1) measurement noise; (2) modeling error; (3) lack of input measurements; and (4) limited number of sensors. A statistical methodology for model updating is adopted in this paper to establish stiffness reductions due to damage. This methodology allows for an explicit treatment of the measurement noise, modeling error, and possible nonuniqueness issues characterizing this inverse problem. The paper briefly describes the methodology and reports on the results obtained in detecting damage in all six cases of Phase I of the benchmark study assuming unknown (ambient) data. The performance, limitations, and difficulties encountered by the proposed statistical methodology are discussed.
doi_str_mv 10.1061/(ASCE)0733-9399(2004)130:1(34)
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28333889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28333889</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-eaef4cabf19a7d53db13f6ea81cf3b56c7de532ffce53dc3e98ceffb766042dc3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMI_5ITaQ8DOpnkgcSil0CJeUkEcLdexSSAkwXYOHPh31hQ44oP3oZnR7BByyOgRowk7Hk1Xs_mYpgBhDnk-iiiNxwzoCRtBPN4iA5bHEKZZlm-TwR9sl-xZ-0Ipi5M8GZDPadfVlRSuapug1YEIVg4H63BXBzdtoergsStw1TwHiDWtkGWA2PtSWBUsPceV2KCZ0BtCvuml6w3SF0rUrkSVpnKt8QpnqpHlmzCvCOuLj32yo0Vt1cFPHZLHi_nDbBFe310uZ9PrUECaulAJpWMp1prlIi0mUKwZ6ESJjEkN60ki00JNINJaYikkqDyTSut1miQ0jnAxJIcbXfT_3ivr-Ftlpapr0ai2tzzKAACDQuDpBihNa61RmnemQr8fnFHuU-fcH8l9nNzHyX3qHFPnjEOM_KcNX6A8f2l70-Bd_Gp-e3P-QDF1oN-P-Q_iTf8r_a_yFw9vkDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28333889</pqid></control><display><type>article</type><title>Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study</title><source>ASCE Online Publications</source><creator>Lam, H. F ; Katafygiotis, L. S ; Mickleborough, N. C</creator><creatorcontrib>Lam, H. F ; Katafygiotis, L. S ; Mickleborough, N. C</creatorcontrib><description>This paper addresses the problem of structural health monitoring (SHM) and damage detection based on a statistical model updating methodology which utilizes the measured vibration responses of the structure without any knowledge of the input excitation. The emphasis in this paper is on the application of the proposed methodology in Phase I of the benchmark study set up by the IASC-ASCE Task Group on structural health monitoring. Details of this SHM benchmark study are available on the Task Group web site at 〈http://wusceel.cive.wustl.edu/asce.shm〉. The benchmark study focuses on important issues, such as: (1) measurement noise; (2) modeling error; (3) lack of input measurements; and (4) limited number of sensors. A statistical methodology for model updating is adopted in this paper to establish stiffness reductions due to damage. This methodology allows for an explicit treatment of the measurement noise, modeling error, and possible nonuniqueness issues characterizing this inverse problem. The paper briefly describes the methodology and reports on the results obtained in detecting damage in all six cases of Phase I of the benchmark study assuming unknown (ambient) data. The performance, limitations, and difficulties encountered by the proposed statistical methodology are discussed.</description><identifier>ISSN: 0733-9399</identifier><identifier>EISSN: 1943-7889</identifier><identifier>DOI: 10.1061/(ASCE)0733-9399(2004)130:1(34)</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>TECHNICAL PAPERS</subject><ispartof>Journal of engineering mechanics, 2004-01, Vol.130 (1), p.34-48</ispartof><rights>Copyright © 2004 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-eaef4cabf19a7d53db13f6ea81cf3b56c7de532ffce53dc3e98ceffb766042dc3</citedby><cites>FETCH-LOGICAL-a377t-eaef4cabf19a7d53db13f6ea81cf3b56c7de532ffce53dc3e98ceffb766042dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9399(2004)130:1(34)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9399(2004)130:1(34)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,3238,10048,27903,27904,75937,75945</link.rule.ids></links><search><creatorcontrib>Lam, H. F</creatorcontrib><creatorcontrib>Katafygiotis, L. S</creatorcontrib><creatorcontrib>Mickleborough, N. C</creatorcontrib><title>Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study</title><title>Journal of engineering mechanics</title><description>This paper addresses the problem of structural health monitoring (SHM) and damage detection based on a statistical model updating methodology which utilizes the measured vibration responses of the structure without any knowledge of the input excitation. The emphasis in this paper is on the application of the proposed methodology in Phase I of the benchmark study set up by the IASC-ASCE Task Group on structural health monitoring. Details of this SHM benchmark study are available on the Task Group web site at 〈http://wusceel.cive.wustl.edu/asce.shm〉. The benchmark study focuses on important issues, such as: (1) measurement noise; (2) modeling error; (3) lack of input measurements; and (4) limited number of sensors. A statistical methodology for model updating is adopted in this paper to establish stiffness reductions due to damage. This methodology allows for an explicit treatment of the measurement noise, modeling error, and possible nonuniqueness issues characterizing this inverse problem. The paper briefly describes the methodology and reports on the results obtained in detecting damage in all six cases of Phase I of the benchmark study assuming unknown (ambient) data. The performance, limitations, and difficulties encountered by the proposed statistical methodology are discussed.</description><subject>TECHNICAL PAPERS</subject><issn>0733-9399</issn><issn>1943-7889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMI_5ITaQ8DOpnkgcSil0CJeUkEcLdexSSAkwXYOHPh31hQ44oP3oZnR7BByyOgRowk7Hk1Xs_mYpgBhDnk-iiiNxwzoCRtBPN4iA5bHEKZZlm-TwR9sl-xZ-0Ipi5M8GZDPadfVlRSuapug1YEIVg4H63BXBzdtoergsStw1TwHiDWtkGWA2PtSWBUsPceV2KCZ0BtCvuml6w3SF0rUrkSVpnKt8QpnqpHlmzCvCOuLj32yo0Vt1cFPHZLHi_nDbBFe310uZ9PrUECaulAJpWMp1prlIi0mUKwZ6ESJjEkN60ki00JNINJaYikkqDyTSut1miQ0jnAxJIcbXfT_3ivr-Ftlpapr0ai2tzzKAACDQuDpBihNa61RmnemQr8fnFHuU-fcH8l9nNzHyX3qHFPnjEOM_KcNX6A8f2l70-Bd_Gp-e3P-QDF1oN-P-Q_iTf8r_a_yFw9vkDA</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Lam, H. F</creator><creator>Katafygiotis, L. S</creator><creator>Mickleborough, N. C</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200401</creationdate><title>Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study</title><author>Lam, H. F ; Katafygiotis, L. S ; Mickleborough, N. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-eaef4cabf19a7d53db13f6ea81cf3b56c7de532ffce53dc3e98ceffb766042dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, H. F</creatorcontrib><creatorcontrib>Katafygiotis, L. S</creatorcontrib><creatorcontrib>Mickleborough, N. C</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, H. F</au><au>Katafygiotis, L. S</au><au>Mickleborough, N. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study</atitle><jtitle>Journal of engineering mechanics</jtitle><date>2004-01</date><risdate>2004</risdate><volume>130</volume><issue>1</issue><spage>34</spage><epage>48</epage><pages>34-48</pages><issn>0733-9399</issn><eissn>1943-7889</eissn><abstract>This paper addresses the problem of structural health monitoring (SHM) and damage detection based on a statistical model updating methodology which utilizes the measured vibration responses of the structure without any knowledge of the input excitation. The emphasis in this paper is on the application of the proposed methodology in Phase I of the benchmark study set up by the IASC-ASCE Task Group on structural health monitoring. Details of this SHM benchmark study are available on the Task Group web site at 〈http://wusceel.cive.wustl.edu/asce.shm〉. The benchmark study focuses on important issues, such as: (1) measurement noise; (2) modeling error; (3) lack of input measurements; and (4) limited number of sensors. A statistical methodology for model updating is adopted in this paper to establish stiffness reductions due to damage. This methodology allows for an explicit treatment of the measurement noise, modeling error, and possible nonuniqueness issues characterizing this inverse problem. The paper briefly describes the methodology and reports on the results obtained in detecting damage in all six cases of Phase I of the benchmark study assuming unknown (ambient) data. The performance, limitations, and difficulties encountered by the proposed statistical methodology are discussed.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9399(2004)130:1(34)</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9399
ispartof Journal of engineering mechanics, 2004-01, Vol.130 (1), p.34-48
issn 0733-9399
1943-7889
language eng
recordid cdi_proquest_miscellaneous_28333889
source ASCE Online Publications
subjects TECHNICAL PAPERS
title Application of a Statistical Model Updating Approach on Phase I of the IASC-ASCE Structural Health Monitoring Benchmark Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20Statistical%20Model%20Updating%20Approach%20on%20Phase%20I%20of%20the%20IASC-ASCE%20Structural%20Health%20Monitoring%20Benchmark%20Study&rft.jtitle=Journal%20of%20engineering%20mechanics&rft.au=Lam,%20H.%20F&rft.date=2004-01&rft.volume=130&rft.issue=1&rft.spage=34&rft.epage=48&rft.pages=34-48&rft.issn=0733-9399&rft.eissn=1943-7889&rft_id=info:doi/10.1061/(ASCE)0733-9399(2004)130:1(34)&rft_dat=%3Cproquest_cross%3E28333889%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a377t-eaef4cabf19a7d53db13f6ea81cf3b56c7de532ffce53dc3e98ceffb766042dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28333889&rft_id=info:pmid/&rfr_iscdi=true