Loading…

Rainfall induced chemical transport from soil to runoff: theory and experiments

Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physicall...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 2004-08, Vol.295 (1), p.291-304
Main Authors: Gao, Bin, Todd Walter, M, Steenhuis, Tammo S, Hogarth, William L, Parlange, J.-Yves
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13
cites cdi_FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13
container_end_page 304
container_issue 1
container_start_page 291
container_title Journal of hydrology (Amsterdam)
container_volume 295
creator Gao, Bin
Todd Walter, M
Steenhuis, Tammo S
Hogarth, William L
Parlange, J.-Yves
description Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with laboratory experiments. One unique aspect of this study is that all the parameters were either directly measured or previously published, that is, there was no model ‘calibration’ or ‘fitting.’ Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or ‘exchange layer,’ via diffusion. The exchange layer depth and transfer processes are derived from the ‘shield’ concept in the Rose soil erosion model (e.g. Rose, 1985). The model's governing equations were solved numerically and the results agreed well with experimental data ( R 2>0.90). The model's sensitivity to various physical and chemical parameters illuminated the importance of both raindrop controlled processes and diffusion on chemical transport from soil to surface runoff.
doi_str_mv 10.1016/j.jhydrol.2004.03.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28339981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002216940400174X</els_id><sourcerecordid>28339981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13</originalsourceid><addsrcrecordid>eNqFkV2rEzEQhoMoWI_-BDE3erdrvppsvBE5-AUHDqjnOswmE5uy3dRkK_bfm9qCl81NSHjmnZn3JeQlZz1nXL_d9tvNMZQ89YIx1TPZM6EfkRUfjO2EYeYxWTEmRMe1VU_Js1q3rB0p1Yrcf4M0R5gmmuZw8Bio3-AueZjoUmCu-1wWGkve0ZpT-8u0HOYc4zu6bDCXI4U5UPyzx5J2OC_1OXnS1Cq-uNw35OHTxx-3X7q7-89fbz_cdaCMWboQlRdGcqb44GWUNrBxFO1lQAFyxDFIO2otjR4AvDWg14Mfx7ZB0ABc3pA3Z919yb8OWBe3S9XjNMGM-VCdGKS0drgOcs2NElZdB1Vzcv0PXJ9BX3KtBaPbt-WhHB1n7hSI27pLIO4UiGPStUBa3etLA6jN39js9an-L27aVpjTxK_OXITs4GdpzMN3wbhkzA5rO7BGvD8T2Bz-nbC46hPOLb1U0C8u5HRllr_Hyq2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14707594</pqid></control><display><type>article</type><title>Rainfall induced chemical transport from soil to runoff: theory and experiments</title><source>Elsevier</source><creator>Gao, Bin ; Todd Walter, M ; Steenhuis, Tammo S ; Hogarth, William L ; Parlange, J.-Yves</creator><creatorcontrib>Gao, Bin ; Todd Walter, M ; Steenhuis, Tammo S ; Hogarth, William L ; Parlange, J.-Yves</creatorcontrib><description>Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with laboratory experiments. One unique aspect of this study is that all the parameters were either directly measured or previously published, that is, there was no model ‘calibration’ or ‘fitting.’ Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or ‘exchange layer,’ via diffusion. The exchange layer depth and transfer processes are derived from the ‘shield’ concept in the Rose soil erosion model (e.g. Rose, 1985). The model's governing equations were solved numerically and the results agreed well with experimental data ( R 2&gt;0.90). The model's sensitivity to various physical and chemical parameters illuminated the importance of both raindrop controlled processes and diffusion on chemical transport from soil to surface runoff.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2004.03.026</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chloride ; chlorides ; Diffusion ; Earth sciences ; Earth, ocean, space ; equations ; Exact sciences and technology ; Exchange layer ; Freshwater ; Geochemistry ; Hydrology ; Hydrology. Hydrogeology ; mathematical models ; Mineralogy ; Phosphorus ; Physically based model ; rain ; Raindrop impact ; Rose model ; runoff ; Silicates ; soil chemistry ; Water geochemistry</subject><ispartof>Journal of hydrology (Amsterdam), 2004-08, Vol.295 (1), p.291-304</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13</citedby><cites>FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15949271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Todd Walter, M</creatorcontrib><creatorcontrib>Steenhuis, Tammo S</creatorcontrib><creatorcontrib>Hogarth, William L</creatorcontrib><creatorcontrib>Parlange, J.-Yves</creatorcontrib><title>Rainfall induced chemical transport from soil to runoff: theory and experiments</title><title>Journal of hydrology (Amsterdam)</title><description>Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with laboratory experiments. One unique aspect of this study is that all the parameters were either directly measured or previously published, that is, there was no model ‘calibration’ or ‘fitting.’ Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or ‘exchange layer,’ via diffusion. The exchange layer depth and transfer processes are derived from the ‘shield’ concept in the Rose soil erosion model (e.g. Rose, 1985). The model's governing equations were solved numerically and the results agreed well with experimental data ( R 2&gt;0.90). The model's sensitivity to various physical and chemical parameters illuminated the importance of both raindrop controlled processes and diffusion on chemical transport from soil to surface runoff.</description><subject>Chloride</subject><subject>chlorides</subject><subject>Diffusion</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Exchange layer</subject><subject>Freshwater</subject><subject>Geochemistry</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematical models</subject><subject>Mineralogy</subject><subject>Phosphorus</subject><subject>Physically based model</subject><subject>rain</subject><subject>Raindrop impact</subject><subject>Rose model</subject><subject>runoff</subject><subject>Silicates</subject><subject>soil chemistry</subject><subject>Water geochemistry</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkV2rEzEQhoMoWI_-BDE3erdrvppsvBE5-AUHDqjnOswmE5uy3dRkK_bfm9qCl81NSHjmnZn3JeQlZz1nXL_d9tvNMZQ89YIx1TPZM6EfkRUfjO2EYeYxWTEmRMe1VU_Js1q3rB0p1Yrcf4M0R5gmmuZw8Bio3-AueZjoUmCu-1wWGkve0ZpT-8u0HOYc4zu6bDCXI4U5UPyzx5J2OC_1OXnS1Cq-uNw35OHTxx-3X7q7-89fbz_cdaCMWboQlRdGcqb44GWUNrBxFO1lQAFyxDFIO2otjR4AvDWg14Mfx7ZB0ABc3pA3Z919yb8OWBe3S9XjNMGM-VCdGKS0drgOcs2NElZdB1Vzcv0PXJ9BX3KtBaPbt-WhHB1n7hSI27pLIO4UiGPStUBa3etLA6jN39js9an-L27aVpjTxK_OXITs4GdpzMN3wbhkzA5rO7BGvD8T2Bz-nbC46hPOLb1U0C8u5HRllr_Hyq2I</recordid><startdate>20040810</startdate><enddate>20040810</enddate><creator>Gao, Bin</creator><creator>Todd Walter, M</creator><creator>Steenhuis, Tammo S</creator><creator>Hogarth, William L</creator><creator>Parlange, J.-Yves</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040810</creationdate><title>Rainfall induced chemical transport from soil to runoff: theory and experiments</title><author>Gao, Bin ; Todd Walter, M ; Steenhuis, Tammo S ; Hogarth, William L ; Parlange, J.-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Chloride</topic><topic>chlorides</topic><topic>Diffusion</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Exchange layer</topic><topic>Freshwater</topic><topic>Geochemistry</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematical models</topic><topic>Mineralogy</topic><topic>Phosphorus</topic><topic>Physically based model</topic><topic>rain</topic><topic>Raindrop impact</topic><topic>Rose model</topic><topic>runoff</topic><topic>Silicates</topic><topic>soil chemistry</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Todd Walter, M</creatorcontrib><creatorcontrib>Steenhuis, Tammo S</creatorcontrib><creatorcontrib>Hogarth, William L</creatorcontrib><creatorcontrib>Parlange, J.-Yves</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Bin</au><au>Todd Walter, M</au><au>Steenhuis, Tammo S</au><au>Hogarth, William L</au><au>Parlange, J.-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rainfall induced chemical transport from soil to runoff: theory and experiments</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2004-08-10</date><risdate>2004</risdate><volume>295</volume><issue>1</issue><spage>291</spage><epage>304</epage><pages>291-304</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with laboratory experiments. One unique aspect of this study is that all the parameters were either directly measured or previously published, that is, there was no model ‘calibration’ or ‘fitting.’ Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or ‘exchange layer,’ via diffusion. The exchange layer depth and transfer processes are derived from the ‘shield’ concept in the Rose soil erosion model (e.g. Rose, 1985). The model's governing equations were solved numerically and the results agreed well with experimental data ( R 2&gt;0.90). The model's sensitivity to various physical and chemical parameters illuminated the importance of both raindrop controlled processes and diffusion on chemical transport from soil to surface runoff.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2004.03.026</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2004-08, Vol.295 (1), p.291-304
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_28339981
source Elsevier
subjects Chloride
chlorides
Diffusion
Earth sciences
Earth, ocean, space
equations
Exact sciences and technology
Exchange layer
Freshwater
Geochemistry
Hydrology
Hydrology. Hydrogeology
mathematical models
Mineralogy
Phosphorus
Physically based model
rain
Raindrop impact
Rose model
runoff
Silicates
soil chemistry
Water geochemistry
title Rainfall induced chemical transport from soil to runoff: theory and experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rainfall%20induced%20chemical%20transport%20from%20soil%20to%20runoff:%20theory%20and%20experiments&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Gao,%20Bin&rft.date=2004-08-10&rft.volume=295&rft.issue=1&rft.spage=291&rft.epage=304&rft.pages=291-304&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2004.03.026&rft_dat=%3Cproquest_cross%3E28339981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14707594&rft_id=info:pmid/&rfr_iscdi=true