Loading…
Rainfall induced chemical transport from soil to runoff: theory and experiments
Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physicall...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 2004-08, Vol.295 (1), p.291-304 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13 |
---|---|
cites | cdi_FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13 |
container_end_page | 304 |
container_issue | 1 |
container_start_page | 291 |
container_title | Journal of hydrology (Amsterdam) |
container_volume | 295 |
creator | Gao, Bin Todd Walter, M Steenhuis, Tammo S Hogarth, William L Parlange, J.-Yves |
description | Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with laboratory experiments. One unique aspect of this study is that all the parameters were either directly measured or previously published, that is, there was no model ‘calibration’ or ‘fitting.’ Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or ‘exchange layer,’ via diffusion. The exchange layer depth and transfer processes are derived from the ‘shield’ concept in the Rose soil erosion model (e.g.
Rose, 1985). The model's governing equations were solved numerically and the results agreed well with experimental data (
R
2>0.90). The model's sensitivity to various physical and chemical parameters illuminated the importance of both raindrop controlled processes and diffusion on chemical transport from soil to surface runoff. |
doi_str_mv | 10.1016/j.jhydrol.2004.03.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28339981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002216940400174X</els_id><sourcerecordid>28339981</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13</originalsourceid><addsrcrecordid>eNqFkV2rEzEQhoMoWI_-BDE3erdrvppsvBE5-AUHDqjnOswmE5uy3dRkK_bfm9qCl81NSHjmnZn3JeQlZz1nXL_d9tvNMZQ89YIx1TPZM6EfkRUfjO2EYeYxWTEmRMe1VU_Js1q3rB0p1Yrcf4M0R5gmmuZw8Bio3-AueZjoUmCu-1wWGkve0ZpT-8u0HOYc4zu6bDCXI4U5UPyzx5J2OC_1OXnS1Cq-uNw35OHTxx-3X7q7-89fbz_cdaCMWboQlRdGcqb44GWUNrBxFO1lQAFyxDFIO2otjR4AvDWg14Mfx7ZB0ABc3pA3Z919yb8OWBe3S9XjNMGM-VCdGKS0drgOcs2NElZdB1Vzcv0PXJ9BX3KtBaPbt-WhHB1n7hSI27pLIO4UiGPStUBa3etLA6jN39js9an-L27aVpjTxK_OXITs4GdpzMN3wbhkzA5rO7BGvD8T2Bz-nbC46hPOLb1U0C8u5HRllr_Hyq2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14707594</pqid></control><display><type>article</type><title>Rainfall induced chemical transport from soil to runoff: theory and experiments</title><source>Elsevier</source><creator>Gao, Bin ; Todd Walter, M ; Steenhuis, Tammo S ; Hogarth, William L ; Parlange, J.-Yves</creator><creatorcontrib>Gao, Bin ; Todd Walter, M ; Steenhuis, Tammo S ; Hogarth, William L ; Parlange, J.-Yves</creatorcontrib><description>Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with laboratory experiments. One unique aspect of this study is that all the parameters were either directly measured or previously published, that is, there was no model ‘calibration’ or ‘fitting.’ Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or ‘exchange layer,’ via diffusion. The exchange layer depth and transfer processes are derived from the ‘shield’ concept in the Rose soil erosion model (e.g.
Rose, 1985). The model's governing equations were solved numerically and the results agreed well with experimental data (
R
2>0.90). The model's sensitivity to various physical and chemical parameters illuminated the importance of both raindrop controlled processes and diffusion on chemical transport from soil to surface runoff.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2004.03.026</identifier><identifier>CODEN: JHYDA7</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chloride ; chlorides ; Diffusion ; Earth sciences ; Earth, ocean, space ; equations ; Exact sciences and technology ; Exchange layer ; Freshwater ; Geochemistry ; Hydrology ; Hydrology. Hydrogeology ; mathematical models ; Mineralogy ; Phosphorus ; Physically based model ; rain ; Raindrop impact ; Rose model ; runoff ; Silicates ; soil chemistry ; Water geochemistry</subject><ispartof>Journal of hydrology (Amsterdam), 2004-08, Vol.295 (1), p.291-304</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13</citedby><cites>FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15949271$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Todd Walter, M</creatorcontrib><creatorcontrib>Steenhuis, Tammo S</creatorcontrib><creatorcontrib>Hogarth, William L</creatorcontrib><creatorcontrib>Parlange, J.-Yves</creatorcontrib><title>Rainfall induced chemical transport from soil to runoff: theory and experiments</title><title>Journal of hydrology (Amsterdam)</title><description>Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with laboratory experiments. One unique aspect of this study is that all the parameters were either directly measured or previously published, that is, there was no model ‘calibration’ or ‘fitting.’ Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or ‘exchange layer,’ via diffusion. The exchange layer depth and transfer processes are derived from the ‘shield’ concept in the Rose soil erosion model (e.g.
Rose, 1985). The model's governing equations were solved numerically and the results agreed well with experimental data (
R
2>0.90). The model's sensitivity to various physical and chemical parameters illuminated the importance of both raindrop controlled processes and diffusion on chemical transport from soil to surface runoff.</description><subject>Chloride</subject><subject>chlorides</subject><subject>Diffusion</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>equations</subject><subject>Exact sciences and technology</subject><subject>Exchange layer</subject><subject>Freshwater</subject><subject>Geochemistry</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>mathematical models</subject><subject>Mineralogy</subject><subject>Phosphorus</subject><subject>Physically based model</subject><subject>rain</subject><subject>Raindrop impact</subject><subject>Rose model</subject><subject>runoff</subject><subject>Silicates</subject><subject>soil chemistry</subject><subject>Water geochemistry</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkV2rEzEQhoMoWI_-BDE3erdrvppsvBE5-AUHDqjnOswmE5uy3dRkK_bfm9qCl81NSHjmnZn3JeQlZz1nXL_d9tvNMZQ89YIx1TPZM6EfkRUfjO2EYeYxWTEmRMe1VU_Js1q3rB0p1Yrcf4M0R5gmmuZw8Bio3-AueZjoUmCu-1wWGkve0ZpT-8u0HOYc4zu6bDCXI4U5UPyzx5J2OC_1OXnS1Cq-uNw35OHTxx-3X7q7-89fbz_cdaCMWboQlRdGcqb44GWUNrBxFO1lQAFyxDFIO2otjR4AvDWg14Mfx7ZB0ABc3pA3Z919yb8OWBe3S9XjNMGM-VCdGKS0drgOcs2NElZdB1Vzcv0PXJ9BX3KtBaPbt-WhHB1n7hSI27pLIO4UiGPStUBa3etLA6jN39js9an-L27aVpjTxK_OXITs4GdpzMN3wbhkzA5rO7BGvD8T2Bz-nbC46hPOLb1U0C8u5HRllr_Hyq2I</recordid><startdate>20040810</startdate><enddate>20040810</enddate><creator>Gao, Bin</creator><creator>Todd Walter, M</creator><creator>Steenhuis, Tammo S</creator><creator>Hogarth, William L</creator><creator>Parlange, J.-Yves</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QH</scope><scope>7TG</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20040810</creationdate><title>Rainfall induced chemical transport from soil to runoff: theory and experiments</title><author>Gao, Bin ; Todd Walter, M ; Steenhuis, Tammo S ; Hogarth, William L ; Parlange, J.-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Chloride</topic><topic>chlorides</topic><topic>Diffusion</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>equations</topic><topic>Exact sciences and technology</topic><topic>Exchange layer</topic><topic>Freshwater</topic><topic>Geochemistry</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>mathematical models</topic><topic>Mineralogy</topic><topic>Phosphorus</topic><topic>Physically based model</topic><topic>rain</topic><topic>Raindrop impact</topic><topic>Rose model</topic><topic>runoff</topic><topic>Silicates</topic><topic>soil chemistry</topic><topic>Water geochemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Bin</creatorcontrib><creatorcontrib>Todd Walter, M</creatorcontrib><creatorcontrib>Steenhuis, Tammo S</creatorcontrib><creatorcontrib>Hogarth, William L</creatorcontrib><creatorcontrib>Parlange, J.-Yves</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Bin</au><au>Todd Walter, M</au><au>Steenhuis, Tammo S</au><au>Hogarth, William L</au><au>Parlange, J.-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rainfall induced chemical transport from soil to runoff: theory and experiments</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2004-08-10</date><risdate>2004</risdate><volume>295</volume><issue>1</issue><spage>291</spage><epage>304</epage><pages>291-304</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><coden>JHYDA7</coden><abstract>Although both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, current transport models either do not consider the two processes together, or use ‘effective’ parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with laboratory experiments. One unique aspect of this study is that all the parameters were either directly measured or previously published, that is, there was no model ‘calibration’ or ‘fitting.’ Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or ‘exchange layer,’ via diffusion. The exchange layer depth and transfer processes are derived from the ‘shield’ concept in the Rose soil erosion model (e.g.
Rose, 1985). The model's governing equations were solved numerically and the results agreed well with experimental data (
R
2>0.90). The model's sensitivity to various physical and chemical parameters illuminated the importance of both raindrop controlled processes and diffusion on chemical transport from soil to surface runoff.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2004.03.026</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1694 |
ispartof | Journal of hydrology (Amsterdam), 2004-08, Vol.295 (1), p.291-304 |
issn | 0022-1694 1879-2707 |
language | eng |
recordid | cdi_proquest_miscellaneous_28339981 |
source | Elsevier |
subjects | Chloride chlorides Diffusion Earth sciences Earth, ocean, space equations Exact sciences and technology Exchange layer Freshwater Geochemistry Hydrology Hydrology. Hydrogeology mathematical models Mineralogy Phosphorus Physically based model rain Raindrop impact Rose model runoff Silicates soil chemistry Water geochemistry |
title | Rainfall induced chemical transport from soil to runoff: theory and experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rainfall%20induced%20chemical%20transport%20from%20soil%20to%20runoff:%20theory%20and%20experiments&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Gao,%20Bin&rft.date=2004-08-10&rft.volume=295&rft.issue=1&rft.spage=291&rft.epage=304&rft.pages=291-304&rft.issn=0022-1694&rft.eissn=1879-2707&rft.coden=JHYDA7&rft_id=info:doi/10.1016/j.jhydrol.2004.03.026&rft_dat=%3Cproquest_cross%3E28339981%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a477t-df4c27310418c3f39d0bb20417a4ae1eebd39b663768aac97a658cbb169d6aa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14707594&rft_id=info:pmid/&rfr_iscdi=true |