Loading…

A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and machine learning

Building height is a crucial variable in the study of urban environments, regional climates, and human-environment interactions. However, high-resolution data on building height, especially at the national scale, are limited. Fortunately, high spatial-temporal resolution earth observations, harnesse...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2023-06, Vol.291, p.113578, Article 113578
Main Authors: Wu, Wan-Ben, Ma, Jun, Banzhaf, Ellen, Meadows, Michael E., Yu, Zhao-Wu, Guo, Feng-Xiang, Sengupta, Dhritiraj, Cai, Xing-Xing, Zhao, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Building height is a crucial variable in the study of urban environments, regional climates, and human-environment interactions. However, high-resolution data on building height, especially at the national scale, are limited. Fortunately, high spatial-temporal resolution earth observations, harnessed using a cloud-based platform, offer an opportunity to fill this gap. We describe an approach to estimate 2020 building height for China at 10 m spatial resolution based on all-weather earth observations (radar, optical, and night light images) using the Random Forest (RF) model. Results show that our building height simulation has a strong correlation with real observations at the national scale (RMSE of 6.1 m, MAE = 5.2 m, R = 0.77). The Combinational Shadow Index (CSI) is the most important contributor (15.1%) to building height simulation. Analysis of the distribution of building morphology reveals significant differences in building volume and average building height at the city scale across China. Macau has the tallest buildings (22.3 m) among Chinese cities, while Shanghai has the largest building volume (298.4 108 m3). The strong correlation between modelled building volume and socio-economic parameters indicates the potential application of building height products. The building height map developed in this study with a resolution of 10 m is open access, provides insights into the 3D morphological characteristics of cities and serves as an important contribution to future urban studies in China. •A first country-wide 10 m building height map for China.•Shading index is the most important variable in estimating building height.•High degree of building height accuracy with RMSE of 6.1 m.
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2023.113578