Loading…
Intrinsic Disorder of the Neuronal SNARE Protein SNAP25a in its Pre-fusion Conformation
[Display omitted] •Residue-specific structural insights on the SNARE protein SNAP25a by NMR.•The monomeric pre-fusion form of SNAP25 is primarily intrinsically disordered.•SNAP25a comprises an N-terminal α-helical region overlapping with the first SNARE motif.•The N-terminal helical region may act a...
Saved in:
Published in: | Journal of molecular biology 2023-05, Vol.435 (10), p.168069-168069, Article 168069 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c386t-98be6abe12582e5b7b2ed4344bc50f3a9187aee355f5507532cdae981fc77b833 |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-98be6abe12582e5b7b2ed4344bc50f3a9187aee355f5507532cdae981fc77b833 |
container_end_page | 168069 |
container_issue | 10 |
container_start_page | 168069 |
container_title | Journal of molecular biology |
container_volume | 435 |
creator | Stief, Tobias Gremer, Lothar Pribicevic, Sonja Espinueva, Delane F. Vormann, Katharina Biehl, Ralf Jahn, Reinhard Pérez-Lara, Ángel Lakomek, Nils-Alexander |
description | [Display omitted]
•Residue-specific structural insights on the SNARE protein SNAP25a by NMR.•The monomeric pre-fusion form of SNAP25 is primarily intrinsically disordered.•SNAP25a comprises an N-terminal α-helical region overlapping with the first SNARE motif.•The N-terminal helical region may act as a nucleation point for SNARE complex assembly.
The neuronal SNARE protein SNAP25a (isoform 2) forms part of the SNARE complex eliciting synaptic vesicle fusion during neuronal exocytosis. While the post-fusion cis-SNARE complex has been studied extensively, little is known about the pre-fusion conformation of SNAP25a. Here we analyze monomeric SNAP25a by NMR spectroscopy, further supported by small-angle X-ray scattering (SAXS) experiments. SAXS data indicate that monomeric SNAP25 is more compact than a Gaussian chain but still a random coil. NMR shows that for monomeric SNAP25a, before SNAP25a interacts with its SNARE partners to drive membrane fusion, only the N-terminal part (region A5 to V36) of the first SNARE motif, SN1 (L11 - L81), is helical, comprising two α-helices (ranging from A5 to Q20 and S25 toV36). From E37 onwards, SNAP25a is mostly disordered and displays high internal flexibility, including the C-terminal part of SN1, almost the entire second SNARE motif (SN2, N144-A199), and the connecting loop region. Apart from the N-terminal helices, only the C-termini of both SN1 (E73 - K79) and SN2 (region T190 - A199), as well as two short regions in the connecting loop (D99 - K102 and E123 - M127) show a weak α-helical propensity (α-helical population |
doi_str_mv | 10.1016/j.jmb.2023.168069 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834208772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283623001286</els_id><sourcerecordid>2834208772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-98be6abe12582e5b7b2ed4344bc50f3a9187aee355f5507532cdae981fc77b833</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotlYfwI3M0s3UXCaTDK6kVi2UWrzgMmQyZzClM6nJjODbm9LqUlfnwnd-OB9C5wSPCSb51Wq8asoxxZSNSS5xXhygIcGySGXO5CEaYkxpSiXLB-gkhBXGmLNMHqMBExizTJAhepu1nbdtsCa5tcH5Cnzi6qR7h2QBvXetXifPi5unabL0rgPbbqcl5TqJre1CXENa98G6Npm4tna-0V0cTtFRrdcBzvZ1hF7vpi-Th3T-eD-b3MxTw2TepYUsIdclEMolBV6KkkKVsSwrDcc10wWRQgMwzmvOseCMmkpDIUlthCglYyN0ucvdePfRQ-hUY4OB9Vq34Pqg4vcZxVII-j8qClZIkXMSUbJDjXcheKjVxttG-y9FsNqqVysV1auterVTH28u9vF92UD1e_HjOgLXOwCij08LXgVjoTVQWQ-mU5Wzf8R_A9NVkjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793987651</pqid></control><display><type>article</type><title>Intrinsic Disorder of the Neuronal SNARE Protein SNAP25a in its Pre-fusion Conformation</title><source>ScienceDirect Freedom Collection</source><creator>Stief, Tobias ; Gremer, Lothar ; Pribicevic, Sonja ; Espinueva, Delane F. ; Vormann, Katharina ; Biehl, Ralf ; Jahn, Reinhard ; Pérez-Lara, Ángel ; Lakomek, Nils-Alexander</creator><creatorcontrib>Stief, Tobias ; Gremer, Lothar ; Pribicevic, Sonja ; Espinueva, Delane F. ; Vormann, Katharina ; Biehl, Ralf ; Jahn, Reinhard ; Pérez-Lara, Ángel ; Lakomek, Nils-Alexander</creatorcontrib><description>[Display omitted]
•Residue-specific structural insights on the SNARE protein SNAP25a by NMR.•The monomeric pre-fusion form of SNAP25 is primarily intrinsically disordered.•SNAP25a comprises an N-terminal α-helical region overlapping with the first SNARE motif.•The N-terminal helical region may act as a nucleation point for SNARE complex assembly.
The neuronal SNARE protein SNAP25a (isoform 2) forms part of the SNARE complex eliciting synaptic vesicle fusion during neuronal exocytosis. While the post-fusion cis-SNARE complex has been studied extensively, little is known about the pre-fusion conformation of SNAP25a. Here we analyze monomeric SNAP25a by NMR spectroscopy, further supported by small-angle X-ray scattering (SAXS) experiments. SAXS data indicate that monomeric SNAP25 is more compact than a Gaussian chain but still a random coil. NMR shows that for monomeric SNAP25a, before SNAP25a interacts with its SNARE partners to drive membrane fusion, only the N-terminal part (region A5 to V36) of the first SNARE motif, SN1 (L11 - L81), is helical, comprising two α-helices (ranging from A5 to Q20 and S25 toV36). From E37 onwards, SNAP25a is mostly disordered and displays high internal flexibility, including the C-terminal part of SN1, almost the entire second SNARE motif (SN2, N144-A199), and the connecting loop region. Apart from the N-terminal helices, only the C-termini of both SN1 (E73 - K79) and SN2 (region T190 - A199), as well as two short regions in the connecting loop (D99 - K102 and E123 - M127) show a weak α-helical propensity (α-helical population < 25%). We speculate that the N-terminal helices (A5 to Q20 and S25 to V36) which constitute the N-terminus of SN1 act as a nucleation site for initiating SNARE zippering.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2023.168069</identifier><identifier>PMID: 37003471</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>exocytosis ; Humans ; intrinsically disordered proteins ; Membrane Fusion ; molecular biology ; neurons ; Neurons - metabolism ; NMR spectroscopy ; nuclear magnetic resonance spectroscopy ; Protein Conformation ; protein dynamics ; Scattering, Small Angle ; small-angle X-ray scattering ; SNAP25a ; SNARE proteins ; SNARE Proteins - metabolism ; synaptic vesicles ; X-Ray Diffraction</subject><ispartof>Journal of molecular biology, 2023-05, Vol.435 (10), p.168069-168069, Article 168069</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-98be6abe12582e5b7b2ed4344bc50f3a9187aee355f5507532cdae981fc77b833</citedby><cites>FETCH-LOGICAL-c386t-98be6abe12582e5b7b2ed4344bc50f3a9187aee355f5507532cdae981fc77b833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37003471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stief, Tobias</creatorcontrib><creatorcontrib>Gremer, Lothar</creatorcontrib><creatorcontrib>Pribicevic, Sonja</creatorcontrib><creatorcontrib>Espinueva, Delane F.</creatorcontrib><creatorcontrib>Vormann, Katharina</creatorcontrib><creatorcontrib>Biehl, Ralf</creatorcontrib><creatorcontrib>Jahn, Reinhard</creatorcontrib><creatorcontrib>Pérez-Lara, Ángel</creatorcontrib><creatorcontrib>Lakomek, Nils-Alexander</creatorcontrib><title>Intrinsic Disorder of the Neuronal SNARE Protein SNAP25a in its Pre-fusion Conformation</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>[Display omitted]
•Residue-specific structural insights on the SNARE protein SNAP25a by NMR.•The monomeric pre-fusion form of SNAP25 is primarily intrinsically disordered.•SNAP25a comprises an N-terminal α-helical region overlapping with the first SNARE motif.•The N-terminal helical region may act as a nucleation point for SNARE complex assembly.
The neuronal SNARE protein SNAP25a (isoform 2) forms part of the SNARE complex eliciting synaptic vesicle fusion during neuronal exocytosis. While the post-fusion cis-SNARE complex has been studied extensively, little is known about the pre-fusion conformation of SNAP25a. Here we analyze monomeric SNAP25a by NMR spectroscopy, further supported by small-angle X-ray scattering (SAXS) experiments. SAXS data indicate that monomeric SNAP25 is more compact than a Gaussian chain but still a random coil. NMR shows that for monomeric SNAP25a, before SNAP25a interacts with its SNARE partners to drive membrane fusion, only the N-terminal part (region A5 to V36) of the first SNARE motif, SN1 (L11 - L81), is helical, comprising two α-helices (ranging from A5 to Q20 and S25 toV36). From E37 onwards, SNAP25a is mostly disordered and displays high internal flexibility, including the C-terminal part of SN1, almost the entire second SNARE motif (SN2, N144-A199), and the connecting loop region. Apart from the N-terminal helices, only the C-termini of both SN1 (E73 - K79) and SN2 (region T190 - A199), as well as two short regions in the connecting loop (D99 - K102 and E123 - M127) show a weak α-helical propensity (α-helical population < 25%). We speculate that the N-terminal helices (A5 to Q20 and S25 to V36) which constitute the N-terminus of SN1 act as a nucleation site for initiating SNARE zippering.</description><subject>exocytosis</subject><subject>Humans</subject><subject>intrinsically disordered proteins</subject><subject>Membrane Fusion</subject><subject>molecular biology</subject><subject>neurons</subject><subject>Neurons - metabolism</subject><subject>NMR spectroscopy</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Protein Conformation</subject><subject>protein dynamics</subject><subject>Scattering, Small Angle</subject><subject>small-angle X-ray scattering</subject><subject>SNAP25a</subject><subject>SNARE proteins</subject><subject>SNARE Proteins - metabolism</subject><subject>synaptic vesicles</subject><subject>X-Ray Diffraction</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMotlYfwI3M0s3UXCaTDK6kVi2UWrzgMmQyZzClM6nJjODbm9LqUlfnwnd-OB9C5wSPCSb51Wq8asoxxZSNSS5xXhygIcGySGXO5CEaYkxpSiXLB-gkhBXGmLNMHqMBExizTJAhepu1nbdtsCa5tcH5Cnzi6qR7h2QBvXetXifPi5unabL0rgPbbqcl5TqJre1CXENa98G6Npm4tna-0V0cTtFRrdcBzvZ1hF7vpi-Th3T-eD-b3MxTw2TepYUsIdclEMolBV6KkkKVsSwrDcc10wWRQgMwzmvOseCMmkpDIUlthCglYyN0ucvdePfRQ-hUY4OB9Vq34Pqg4vcZxVII-j8qClZIkXMSUbJDjXcheKjVxttG-y9FsNqqVysV1auterVTH28u9vF92UD1e_HjOgLXOwCij08LXgVjoTVQWQ-mU5Wzf8R_A9NVkjY</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Stief, Tobias</creator><creator>Gremer, Lothar</creator><creator>Pribicevic, Sonja</creator><creator>Espinueva, Delane F.</creator><creator>Vormann, Katharina</creator><creator>Biehl, Ralf</creator><creator>Jahn, Reinhard</creator><creator>Pérez-Lara, Ángel</creator><creator>Lakomek, Nils-Alexander</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20230515</creationdate><title>Intrinsic Disorder of the Neuronal SNARE Protein SNAP25a in its Pre-fusion Conformation</title><author>Stief, Tobias ; Gremer, Lothar ; Pribicevic, Sonja ; Espinueva, Delane F. ; Vormann, Katharina ; Biehl, Ralf ; Jahn, Reinhard ; Pérez-Lara, Ángel ; Lakomek, Nils-Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-98be6abe12582e5b7b2ed4344bc50f3a9187aee355f5507532cdae981fc77b833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>exocytosis</topic><topic>Humans</topic><topic>intrinsically disordered proteins</topic><topic>Membrane Fusion</topic><topic>molecular biology</topic><topic>neurons</topic><topic>Neurons - metabolism</topic><topic>NMR spectroscopy</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Protein Conformation</topic><topic>protein dynamics</topic><topic>Scattering, Small Angle</topic><topic>small-angle X-ray scattering</topic><topic>SNAP25a</topic><topic>SNARE proteins</topic><topic>SNARE Proteins - metabolism</topic><topic>synaptic vesicles</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stief, Tobias</creatorcontrib><creatorcontrib>Gremer, Lothar</creatorcontrib><creatorcontrib>Pribicevic, Sonja</creatorcontrib><creatorcontrib>Espinueva, Delane F.</creatorcontrib><creatorcontrib>Vormann, Katharina</creatorcontrib><creatorcontrib>Biehl, Ralf</creatorcontrib><creatorcontrib>Jahn, Reinhard</creatorcontrib><creatorcontrib>Pérez-Lara, Ángel</creatorcontrib><creatorcontrib>Lakomek, Nils-Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stief, Tobias</au><au>Gremer, Lothar</au><au>Pribicevic, Sonja</au><au>Espinueva, Delane F.</au><au>Vormann, Katharina</au><au>Biehl, Ralf</au><au>Jahn, Reinhard</au><au>Pérez-Lara, Ángel</au><au>Lakomek, Nils-Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Disorder of the Neuronal SNARE Protein SNAP25a in its Pre-fusion Conformation</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2023-05-15</date><risdate>2023</risdate><volume>435</volume><issue>10</issue><spage>168069</spage><epage>168069</epage><pages>168069-168069</pages><artnum>168069</artnum><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>[Display omitted]
•Residue-specific structural insights on the SNARE protein SNAP25a by NMR.•The monomeric pre-fusion form of SNAP25 is primarily intrinsically disordered.•SNAP25a comprises an N-terminal α-helical region overlapping with the first SNARE motif.•The N-terminal helical region may act as a nucleation point for SNARE complex assembly.
The neuronal SNARE protein SNAP25a (isoform 2) forms part of the SNARE complex eliciting synaptic vesicle fusion during neuronal exocytosis. While the post-fusion cis-SNARE complex has been studied extensively, little is known about the pre-fusion conformation of SNAP25a. Here we analyze monomeric SNAP25a by NMR spectroscopy, further supported by small-angle X-ray scattering (SAXS) experiments. SAXS data indicate that monomeric SNAP25 is more compact than a Gaussian chain but still a random coil. NMR shows that for monomeric SNAP25a, before SNAP25a interacts with its SNARE partners to drive membrane fusion, only the N-terminal part (region A5 to V36) of the first SNARE motif, SN1 (L11 - L81), is helical, comprising two α-helices (ranging from A5 to Q20 and S25 toV36). From E37 onwards, SNAP25a is mostly disordered and displays high internal flexibility, including the C-terminal part of SN1, almost the entire second SNARE motif (SN2, N144-A199), and the connecting loop region. Apart from the N-terminal helices, only the C-termini of both SN1 (E73 - K79) and SN2 (region T190 - A199), as well as two short regions in the connecting loop (D99 - K102 and E123 - M127) show a weak α-helical propensity (α-helical population < 25%). We speculate that the N-terminal helices (A5 to Q20 and S25 to V36) which constitute the N-terminus of SN1 act as a nucleation site for initiating SNARE zippering.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>37003471</pmid><doi>10.1016/j.jmb.2023.168069</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2023-05, Vol.435 (10), p.168069-168069, Article 168069 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_2834208772 |
source | ScienceDirect Freedom Collection |
subjects | exocytosis Humans intrinsically disordered proteins Membrane Fusion molecular biology neurons Neurons - metabolism NMR spectroscopy nuclear magnetic resonance spectroscopy Protein Conformation protein dynamics Scattering, Small Angle small-angle X-ray scattering SNAP25a SNARE proteins SNARE Proteins - metabolism synaptic vesicles X-Ray Diffraction |
title | Intrinsic Disorder of the Neuronal SNARE Protein SNAP25a in its Pre-fusion Conformation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Disorder%20of%20the%20Neuronal%20SNARE%20Protein%20SNAP25a%20in%20its%20Pre-fusion%20Conformation&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Stief,%20Tobias&rft.date=2023-05-15&rft.volume=435&rft.issue=10&rft.spage=168069&rft.epage=168069&rft.pages=168069-168069&rft.artnum=168069&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2023.168069&rft_dat=%3Cproquest_cross%3E2834208772%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-98be6abe12582e5b7b2ed4344bc50f3a9187aee355f5507532cdae981fc77b833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2793987651&rft_id=info:pmid/37003471&rfr_iscdi=true |