Loading…

Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics

In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were sel...

Full description

Saved in:
Bibliographic Details
Published in:Food science & technology 2023-05, Vol.181, p.114742, Article 114742
Main Authors: Ren, Yin-feng, Ye, Zhi-hao, Liu, Xiao-qian, Xia, Wei-jing, Yuan, Yan, Zhu, Hai-yan, Chen, Xiao-tong, Hou, Ru-yan, Cai, Hui-mei, Li, Da-xiang, Granato, Daniel, Peng, Chuan-yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83
cites cdi_FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83
container_end_page
container_issue
container_start_page 114742
container_title Food science & technology
container_volume 181
creator Ren, Yin-feng
Ye, Zhi-hao
Liu, Xiao-qian
Xia, Wei-jing
Yuan, Yan
Zhu, Hai-yan
Chen, Xiao-tong
Hou, Ru-yan
Cai, Hui-mei
Li, Da-xiang
Granato, Daniel
Peng, Chuan-yi
description In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were selected, and the intensities were calculated for chemometric analysis. Linear discriminant analysis (LDA) presented an average discrimination accuracy of 86.3%, with 84.3% cross-validation for evaluation. The recognition of three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF), and K-Nearest Neighbor (KNN), for black tea were 93.5%, 93.5%, and 87.1%, respectively. Herein, this study demonstrates the potential of the SERS technique coupled with AgNPs and chemometrics as an accessible, prompt, and fast method for discriminating the geographic origins of teas. •Keemun black teas were authenticated by the SERS-based metabolomics fingerprints.•The SERS peaks at Δv = 555, 644, 731, 955, 1240, 1321 and 1539 cm−1 were selected.•LDA presented an 86.3% discrimination accuracy with 84.3% cross-validation.•The recognition of FNN, RF and KNN were 93.5%, 93.5%, and 87.1%, respectively.
doi_str_mv 10.1016/j.lwt.2023.114742
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834224125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0023643823003213</els_id><sourcerecordid>2834224125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7j5yCXF6zgvcUIVL1EJicfZcpyN6pLEwXaoKvHjcVXO7GUPOzPa-Qi5BLYABvn1ZtFtw4Izni4ARCH4EZkBq_IEgBfHZMbiJclFWp6SM-83LI7g5Yz8vE2uVRoTHNZq0NjQV9WrgfoRdXDWazvuklr5eOgxqNp2tjfa09Y6GtZIG-O1M70ZVDB2oLalz4j9NNC6U_qTBlSeajuNXQzYmrCmeo29jVEuppyTk1Z1Hi_-9px83N-9Lx-T1cvD0_J2lei0SEMCOq9K3TBoOeRV1tRYVKIWmGUigxoEQ14X2CBWTVMJzZSoaqaLImMcWoFlOidXh9zR2a8JfZB9fBu7Tg1oJy95mQrOBfAsSuEg1bG8d9jKMdZTbieByT1puZGRtNyTlgfS0XNz8GDs8G3QSa8N7mEaFynKxpp_3L9fm4kL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834224125</pqid></control><display><type>article</type><title>Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics</title><source>ScienceDirect Freedom Collection</source><creator>Ren, Yin-feng ; Ye, Zhi-hao ; Liu, Xiao-qian ; Xia, Wei-jing ; Yuan, Yan ; Zhu, Hai-yan ; Chen, Xiao-tong ; Hou, Ru-yan ; Cai, Hui-mei ; Li, Da-xiang ; Granato, Daniel ; Peng, Chuan-yi</creator><creatorcontrib>Ren, Yin-feng ; Ye, Zhi-hao ; Liu, Xiao-qian ; Xia, Wei-jing ; Yuan, Yan ; Zhu, Hai-yan ; Chen, Xiao-tong ; Hou, Ru-yan ; Cai, Hui-mei ; Li, Da-xiang ; Granato, Daniel ; Peng, Chuan-yi</creatorcontrib><description>In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were selected, and the intensities were calculated for chemometric analysis. Linear discriminant analysis (LDA) presented an average discrimination accuracy of 86.3%, with 84.3% cross-validation for evaluation. The recognition of three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF), and K-Nearest Neighbor (KNN), for black tea were 93.5%, 93.5%, and 87.1%, respectively. Herein, this study demonstrates the potential of the SERS technique coupled with AgNPs and chemometrics as an accessible, prompt, and fast method for discriminating the geographic origins of teas. •Keemun black teas were authenticated by the SERS-based metabolomics fingerprints.•The SERS peaks at Δv = 555, 644, 731, 955, 1240, 1321 and 1539 cm−1 were selected.•LDA presented an 86.3% discrimination accuracy with 84.3% cross-validation.•The recognition of FNN, RF and KNN were 93.5%, 93.5%, and 87.1%, respectively.</description><identifier>ISSN: 0023-6438</identifier><identifier>EISSN: 1096-1127</identifier><identifier>DOI: 10.1016/j.lwt.2023.114742</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>black tea ; Chemometrics ; discriminant analysis ; Discrimination ; Keemun black tea ; metabolomics ; Metabolomics fingerprints ; nanosilver ; Raman spectroscopy ; Surface-enhanced Raman spectroscopy</subject><ispartof>Food science &amp; technology, 2023-05, Vol.181, p.114742, Article 114742</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83</citedby><cites>FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83</cites><orcidid>0000-0002-4533-1597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ren, Yin-feng</creatorcontrib><creatorcontrib>Ye, Zhi-hao</creatorcontrib><creatorcontrib>Liu, Xiao-qian</creatorcontrib><creatorcontrib>Xia, Wei-jing</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><creatorcontrib>Zhu, Hai-yan</creatorcontrib><creatorcontrib>Chen, Xiao-tong</creatorcontrib><creatorcontrib>Hou, Ru-yan</creatorcontrib><creatorcontrib>Cai, Hui-mei</creatorcontrib><creatorcontrib>Li, Da-xiang</creatorcontrib><creatorcontrib>Granato, Daniel</creatorcontrib><creatorcontrib>Peng, Chuan-yi</creatorcontrib><title>Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics</title><title>Food science &amp; technology</title><description>In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were selected, and the intensities were calculated for chemometric analysis. Linear discriminant analysis (LDA) presented an average discrimination accuracy of 86.3%, with 84.3% cross-validation for evaluation. The recognition of three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF), and K-Nearest Neighbor (KNN), for black tea were 93.5%, 93.5%, and 87.1%, respectively. Herein, this study demonstrates the potential of the SERS technique coupled with AgNPs and chemometrics as an accessible, prompt, and fast method for discriminating the geographic origins of teas. •Keemun black teas were authenticated by the SERS-based metabolomics fingerprints.•The SERS peaks at Δv = 555, 644, 731, 955, 1240, 1321 and 1539 cm−1 were selected.•LDA presented an 86.3% discrimination accuracy with 84.3% cross-validation.•The recognition of FNN, RF and KNN were 93.5%, 93.5%, and 87.1%, respectively.</description><subject>black tea</subject><subject>Chemometrics</subject><subject>discriminant analysis</subject><subject>Discrimination</subject><subject>Keemun black tea</subject><subject>metabolomics</subject><subject>Metabolomics fingerprints</subject><subject>nanosilver</subject><subject>Raman spectroscopy</subject><subject>Surface-enhanced Raman spectroscopy</subject><issn>0023-6438</issn><issn>1096-1127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7j5yCXF6zgvcUIVL1EJicfZcpyN6pLEwXaoKvHjcVXO7GUPOzPa-Qi5BLYABvn1ZtFtw4Izni4ARCH4EZkBq_IEgBfHZMbiJclFWp6SM-83LI7g5Yz8vE2uVRoTHNZq0NjQV9WrgfoRdXDWazvuklr5eOgxqNp2tjfa09Y6GtZIG-O1M70ZVDB2oLalz4j9NNC6U_qTBlSeajuNXQzYmrCmeo29jVEuppyTk1Z1Hi_-9px83N-9Lx-T1cvD0_J2lei0SEMCOq9K3TBoOeRV1tRYVKIWmGUigxoEQ14X2CBWTVMJzZSoaqaLImMcWoFlOidXh9zR2a8JfZB9fBu7Tg1oJy95mQrOBfAsSuEg1bG8d9jKMdZTbieByT1puZGRtNyTlgfS0XNz8GDs8G3QSa8N7mEaFynKxpp_3L9fm4kL</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ren, Yin-feng</creator><creator>Ye, Zhi-hao</creator><creator>Liu, Xiao-qian</creator><creator>Xia, Wei-jing</creator><creator>Yuan, Yan</creator><creator>Zhu, Hai-yan</creator><creator>Chen, Xiao-tong</creator><creator>Hou, Ru-yan</creator><creator>Cai, Hui-mei</creator><creator>Li, Da-xiang</creator><creator>Granato, Daniel</creator><creator>Peng, Chuan-yi</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4533-1597</orcidid></search><sort><creationdate>20230501</creationdate><title>Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics</title><author>Ren, Yin-feng ; Ye, Zhi-hao ; Liu, Xiao-qian ; Xia, Wei-jing ; Yuan, Yan ; Zhu, Hai-yan ; Chen, Xiao-tong ; Hou, Ru-yan ; Cai, Hui-mei ; Li, Da-xiang ; Granato, Daniel ; Peng, Chuan-yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>black tea</topic><topic>Chemometrics</topic><topic>discriminant analysis</topic><topic>Discrimination</topic><topic>Keemun black tea</topic><topic>metabolomics</topic><topic>Metabolomics fingerprints</topic><topic>nanosilver</topic><topic>Raman spectroscopy</topic><topic>Surface-enhanced Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yin-feng</creatorcontrib><creatorcontrib>Ye, Zhi-hao</creatorcontrib><creatorcontrib>Liu, Xiao-qian</creatorcontrib><creatorcontrib>Xia, Wei-jing</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><creatorcontrib>Zhu, Hai-yan</creatorcontrib><creatorcontrib>Chen, Xiao-tong</creatorcontrib><creatorcontrib>Hou, Ru-yan</creatorcontrib><creatorcontrib>Cai, Hui-mei</creatorcontrib><creatorcontrib>Li, Da-xiang</creatorcontrib><creatorcontrib>Granato, Daniel</creatorcontrib><creatorcontrib>Peng, Chuan-yi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yin-feng</au><au>Ye, Zhi-hao</au><au>Liu, Xiao-qian</au><au>Xia, Wei-jing</au><au>Yuan, Yan</au><au>Zhu, Hai-yan</au><au>Chen, Xiao-tong</au><au>Hou, Ru-yan</au><au>Cai, Hui-mei</au><au>Li, Da-xiang</au><au>Granato, Daniel</au><au>Peng, Chuan-yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics</atitle><jtitle>Food science &amp; technology</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>181</volume><spage>114742</spage><pages>114742-</pages><artnum>114742</artnum><issn>0023-6438</issn><eissn>1096-1127</eissn><abstract>In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were selected, and the intensities were calculated for chemometric analysis. Linear discriminant analysis (LDA) presented an average discrimination accuracy of 86.3%, with 84.3% cross-validation for evaluation. The recognition of three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF), and K-Nearest Neighbor (KNN), for black tea were 93.5%, 93.5%, and 87.1%, respectively. Herein, this study demonstrates the potential of the SERS technique coupled with AgNPs and chemometrics as an accessible, prompt, and fast method for discriminating the geographic origins of teas. •Keemun black teas were authenticated by the SERS-based metabolomics fingerprints.•The SERS peaks at Δv = 555, 644, 731, 955, 1240, 1321 and 1539 cm−1 were selected.•LDA presented an 86.3% discrimination accuracy with 84.3% cross-validation.•The recognition of FNN, RF and KNN were 93.5%, 93.5%, and 87.1%, respectively.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.lwt.2023.114742</doi><orcidid>https://orcid.org/0000-0002-4533-1597</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0023-6438
ispartof Food science & technology, 2023-05, Vol.181, p.114742, Article 114742
issn 0023-6438
1096-1127
language eng
recordid cdi_proquest_miscellaneous_2834224125
source ScienceDirect Freedom Collection
subjects black tea
Chemometrics
discriminant analysis
Discrimination
Keemun black tea
metabolomics
Metabolomics fingerprints
nanosilver
Raman spectroscopy
Surface-enhanced Raman spectroscopy
title Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-enhanced%20Raman%20spectroscopy-based%20metabolomics%20for%20the%20discrimination%20of%20Keemun%20black%20teas%20coupled%20with%20chemometrics&rft.jtitle=Food%20science%20&%20technology&rft.au=Ren,%20Yin-feng&rft.date=2023-05-01&rft.volume=181&rft.spage=114742&rft.pages=114742-&rft.artnum=114742&rft.issn=0023-6438&rft.eissn=1096-1127&rft_id=info:doi/10.1016/j.lwt.2023.114742&rft_dat=%3Cproquest_cross%3E2834224125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2834224125&rft_id=info:pmid/&rfr_iscdi=true