Loading…
Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics
In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were sel...
Saved in:
Published in: | Food science & technology 2023-05, Vol.181, p.114742, Article 114742 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83 |
container_end_page | |
container_issue | |
container_start_page | 114742 |
container_title | Food science & technology |
container_volume | 181 |
creator | Ren, Yin-feng Ye, Zhi-hao Liu, Xiao-qian Xia, Wei-jing Yuan, Yan Zhu, Hai-yan Chen, Xiao-tong Hou, Ru-yan Cai, Hui-mei Li, Da-xiang Granato, Daniel Peng, Chuan-yi |
description | In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were selected, and the intensities were calculated for chemometric analysis. Linear discriminant analysis (LDA) presented an average discrimination accuracy of 86.3%, with 84.3% cross-validation for evaluation. The recognition of three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF), and K-Nearest Neighbor (KNN), for black tea were 93.5%, 93.5%, and 87.1%, respectively. Herein, this study demonstrates the potential of the SERS technique coupled with AgNPs and chemometrics as an accessible, prompt, and fast method for discriminating the geographic origins of teas.
•Keemun black teas were authenticated by the SERS-based metabolomics fingerprints.•The SERS peaks at Δv = 555, 644, 731, 955, 1240, 1321 and 1539 cm−1 were selected.•LDA presented an 86.3% discrimination accuracy with 84.3% cross-validation.•The recognition of FNN, RF and KNN were 93.5%, 93.5%, and 87.1%, respectively. |
doi_str_mv | 10.1016/j.lwt.2023.114742 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834224125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0023643823003213</els_id><sourcerecordid>2834224125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7j5yCXF6zgvcUIVL1EJicfZcpyN6pLEwXaoKvHjcVXO7GUPOzPa-Qi5BLYABvn1ZtFtw4Izni4ARCH4EZkBq_IEgBfHZMbiJclFWp6SM-83LI7g5Yz8vE2uVRoTHNZq0NjQV9WrgfoRdXDWazvuklr5eOgxqNp2tjfa09Y6GtZIG-O1M70ZVDB2oLalz4j9NNC6U_qTBlSeajuNXQzYmrCmeo29jVEuppyTk1Z1Hi_-9px83N-9Lx-T1cvD0_J2lei0SEMCOq9K3TBoOeRV1tRYVKIWmGUigxoEQ14X2CBWTVMJzZSoaqaLImMcWoFlOidXh9zR2a8JfZB9fBu7Tg1oJy95mQrOBfAsSuEg1bG8d9jKMdZTbieByT1puZGRtNyTlgfS0XNz8GDs8G3QSa8N7mEaFynKxpp_3L9fm4kL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834224125</pqid></control><display><type>article</type><title>Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics</title><source>ScienceDirect Freedom Collection</source><creator>Ren, Yin-feng ; Ye, Zhi-hao ; Liu, Xiao-qian ; Xia, Wei-jing ; Yuan, Yan ; Zhu, Hai-yan ; Chen, Xiao-tong ; Hou, Ru-yan ; Cai, Hui-mei ; Li, Da-xiang ; Granato, Daniel ; Peng, Chuan-yi</creator><creatorcontrib>Ren, Yin-feng ; Ye, Zhi-hao ; Liu, Xiao-qian ; Xia, Wei-jing ; Yuan, Yan ; Zhu, Hai-yan ; Chen, Xiao-tong ; Hou, Ru-yan ; Cai, Hui-mei ; Li, Da-xiang ; Granato, Daniel ; Peng, Chuan-yi</creatorcontrib><description>In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were selected, and the intensities were calculated for chemometric analysis. Linear discriminant analysis (LDA) presented an average discrimination accuracy of 86.3%, with 84.3% cross-validation for evaluation. The recognition of three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF), and K-Nearest Neighbor (KNN), for black tea were 93.5%, 93.5%, and 87.1%, respectively. Herein, this study demonstrates the potential of the SERS technique coupled with AgNPs and chemometrics as an accessible, prompt, and fast method for discriminating the geographic origins of teas.
•Keemun black teas were authenticated by the SERS-based metabolomics fingerprints.•The SERS peaks at Δv = 555, 644, 731, 955, 1240, 1321 and 1539 cm−1 were selected.•LDA presented an 86.3% discrimination accuracy with 84.3% cross-validation.•The recognition of FNN, RF and KNN were 93.5%, 93.5%, and 87.1%, respectively.</description><identifier>ISSN: 0023-6438</identifier><identifier>EISSN: 1096-1127</identifier><identifier>DOI: 10.1016/j.lwt.2023.114742</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>black tea ; Chemometrics ; discriminant analysis ; Discrimination ; Keemun black tea ; metabolomics ; Metabolomics fingerprints ; nanosilver ; Raman spectroscopy ; Surface-enhanced Raman spectroscopy</subject><ispartof>Food science & technology, 2023-05, Vol.181, p.114742, Article 114742</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83</citedby><cites>FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83</cites><orcidid>0000-0002-4533-1597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ren, Yin-feng</creatorcontrib><creatorcontrib>Ye, Zhi-hao</creatorcontrib><creatorcontrib>Liu, Xiao-qian</creatorcontrib><creatorcontrib>Xia, Wei-jing</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><creatorcontrib>Zhu, Hai-yan</creatorcontrib><creatorcontrib>Chen, Xiao-tong</creatorcontrib><creatorcontrib>Hou, Ru-yan</creatorcontrib><creatorcontrib>Cai, Hui-mei</creatorcontrib><creatorcontrib>Li, Da-xiang</creatorcontrib><creatorcontrib>Granato, Daniel</creatorcontrib><creatorcontrib>Peng, Chuan-yi</creatorcontrib><title>Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics</title><title>Food science & technology</title><description>In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were selected, and the intensities were calculated for chemometric analysis. Linear discriminant analysis (LDA) presented an average discrimination accuracy of 86.3%, with 84.3% cross-validation for evaluation. The recognition of three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF), and K-Nearest Neighbor (KNN), for black tea were 93.5%, 93.5%, and 87.1%, respectively. Herein, this study demonstrates the potential of the SERS technique coupled with AgNPs and chemometrics as an accessible, prompt, and fast method for discriminating the geographic origins of teas.
•Keemun black teas were authenticated by the SERS-based metabolomics fingerprints.•The SERS peaks at Δv = 555, 644, 731, 955, 1240, 1321 and 1539 cm−1 were selected.•LDA presented an 86.3% discrimination accuracy with 84.3% cross-validation.•The recognition of FNN, RF and KNN were 93.5%, 93.5%, and 87.1%, respectively.</description><subject>black tea</subject><subject>Chemometrics</subject><subject>discriminant analysis</subject><subject>Discrimination</subject><subject>Keemun black tea</subject><subject>metabolomics</subject><subject>Metabolomics fingerprints</subject><subject>nanosilver</subject><subject>Raman spectroscopy</subject><subject>Surface-enhanced Raman spectroscopy</subject><issn>0023-6438</issn><issn>1096-1127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7j5yCXF6zgvcUIVL1EJicfZcpyN6pLEwXaoKvHjcVXO7GUPOzPa-Qi5BLYABvn1ZtFtw4Izni4ARCH4EZkBq_IEgBfHZMbiJclFWp6SM-83LI7g5Yz8vE2uVRoTHNZq0NjQV9WrgfoRdXDWazvuklr5eOgxqNp2tjfa09Y6GtZIG-O1M70ZVDB2oLalz4j9NNC6U_qTBlSeajuNXQzYmrCmeo29jVEuppyTk1Z1Hi_-9px83N-9Lx-T1cvD0_J2lei0SEMCOq9K3TBoOeRV1tRYVKIWmGUigxoEQ14X2CBWTVMJzZSoaqaLImMcWoFlOidXh9zR2a8JfZB9fBu7Tg1oJy95mQrOBfAsSuEg1bG8d9jKMdZTbieByT1puZGRtNyTlgfS0XNz8GDs8G3QSa8N7mEaFynKxpp_3L9fm4kL</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Ren, Yin-feng</creator><creator>Ye, Zhi-hao</creator><creator>Liu, Xiao-qian</creator><creator>Xia, Wei-jing</creator><creator>Yuan, Yan</creator><creator>Zhu, Hai-yan</creator><creator>Chen, Xiao-tong</creator><creator>Hou, Ru-yan</creator><creator>Cai, Hui-mei</creator><creator>Li, Da-xiang</creator><creator>Granato, Daniel</creator><creator>Peng, Chuan-yi</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4533-1597</orcidid></search><sort><creationdate>20230501</creationdate><title>Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics</title><author>Ren, Yin-feng ; Ye, Zhi-hao ; Liu, Xiao-qian ; Xia, Wei-jing ; Yuan, Yan ; Zhu, Hai-yan ; Chen, Xiao-tong ; Hou, Ru-yan ; Cai, Hui-mei ; Li, Da-xiang ; Granato, Daniel ; Peng, Chuan-yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>black tea</topic><topic>Chemometrics</topic><topic>discriminant analysis</topic><topic>Discrimination</topic><topic>Keemun black tea</topic><topic>metabolomics</topic><topic>Metabolomics fingerprints</topic><topic>nanosilver</topic><topic>Raman spectroscopy</topic><topic>Surface-enhanced Raman spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Yin-feng</creatorcontrib><creatorcontrib>Ye, Zhi-hao</creatorcontrib><creatorcontrib>Liu, Xiao-qian</creatorcontrib><creatorcontrib>Xia, Wei-jing</creatorcontrib><creatorcontrib>Yuan, Yan</creatorcontrib><creatorcontrib>Zhu, Hai-yan</creatorcontrib><creatorcontrib>Chen, Xiao-tong</creatorcontrib><creatorcontrib>Hou, Ru-yan</creatorcontrib><creatorcontrib>Cai, Hui-mei</creatorcontrib><creatorcontrib>Li, Da-xiang</creatorcontrib><creatorcontrib>Granato, Daniel</creatorcontrib><creatorcontrib>Peng, Chuan-yi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Yin-feng</au><au>Ye, Zhi-hao</au><au>Liu, Xiao-qian</au><au>Xia, Wei-jing</au><au>Yuan, Yan</au><au>Zhu, Hai-yan</au><au>Chen, Xiao-tong</au><au>Hou, Ru-yan</au><au>Cai, Hui-mei</au><au>Li, Da-xiang</au><au>Granato, Daniel</au><au>Peng, Chuan-yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics</atitle><jtitle>Food science & technology</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>181</volume><spage>114742</spage><pages>114742-</pages><artnum>114742</artnum><issn>0023-6438</issn><eissn>1096-1127</eissn><abstract>In the present study, the Surface-enhanced Raman Spectroscopy (SERS)-based metabolomics approach coupled with chemometrics was developed to determine the geographic origins of Keemun black tea. The SERS peaks enhanced by Ag nanoparticles at Δv = 555, 644, 731, 955, 1240, 1321, and 1539 cm−1 were selected, and the intensities were calculated for chemometric analysis. Linear discriminant analysis (LDA) presented an average discrimination accuracy of 86.3%, with 84.3% cross-validation for evaluation. The recognition of three machine learning algorithms, namely feedforward neural network (FNN), random forest (RF), and K-Nearest Neighbor (KNN), for black tea were 93.5%, 93.5%, and 87.1%, respectively. Herein, this study demonstrates the potential of the SERS technique coupled with AgNPs and chemometrics as an accessible, prompt, and fast method for discriminating the geographic origins of teas.
•Keemun black teas were authenticated by the SERS-based metabolomics fingerprints.•The SERS peaks at Δv = 555, 644, 731, 955, 1240, 1321 and 1539 cm−1 were selected.•LDA presented an 86.3% discrimination accuracy with 84.3% cross-validation.•The recognition of FNN, RF and KNN were 93.5%, 93.5%, and 87.1%, respectively.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.lwt.2023.114742</doi><orcidid>https://orcid.org/0000-0002-4533-1597</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0023-6438 |
ispartof | Food science & technology, 2023-05, Vol.181, p.114742, Article 114742 |
issn | 0023-6438 1096-1127 |
language | eng |
recordid | cdi_proquest_miscellaneous_2834224125 |
source | ScienceDirect Freedom Collection |
subjects | black tea Chemometrics discriminant analysis Discrimination Keemun black tea metabolomics Metabolomics fingerprints nanosilver Raman spectroscopy Surface-enhanced Raman spectroscopy |
title | Surface-enhanced Raman spectroscopy-based metabolomics for the discrimination of Keemun black teas coupled with chemometrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-enhanced%20Raman%20spectroscopy-based%20metabolomics%20for%20the%20discrimination%20of%20Keemun%20black%20teas%20coupled%20with%20chemometrics&rft.jtitle=Food%20science%20&%20technology&rft.au=Ren,%20Yin-feng&rft.date=2023-05-01&rft.volume=181&rft.spage=114742&rft.pages=114742-&rft.artnum=114742&rft.issn=0023-6438&rft.eissn=1096-1127&rft_id=info:doi/10.1016/j.lwt.2023.114742&rft_dat=%3Cproquest_cross%3E2834224125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c373t-1c698cd01f21695dbe794b4e55451b140e2b7edee9dd94c0a49b0c775021f4e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2834224125&rft_id=info:pmid/&rfr_iscdi=true |