Loading…
Magnetocardiographic localization of arrhythmia substrates: a methodology study with accessory pathway ablation as reference
In magnetocardiographic (MCG) localization of arrhythmia substrates, a model of the thorax volume conductor is a crucial component of the calculations. In this study, the authors investigated different models of the thorax, to determine the most suitable to use in the computations. Their methods and...
Saved in:
Published in: | IEEE transactions on medical imaging 1998-06, Vol.17 (3), p.479-484 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In magnetocardiographic (MCG) localization of arrhythmia substrates, a model of the thorax volume conductor is a crucial component of the calculations. In this study, the authors investigated different models of the thorax, to determine the most suitable to use in the computations. Their methods and results are as follows. They studied 11 patients with overt Wolff-Parkinson-White syndrome, scheduled for catheter ablation. The MCG registrations were made with a 37-channel "superconducting quantum interference device" system. The underlying equivalent current dipole was computed for the delta-wave. Three models of the thorax were used: the infinite halfspace, a sphere and a box. For anatomical correlation and to define the suitable sphere and box, magnetic resonance images were obtained. As reference the authors used the position of the tip of the catheter, at successful radio-frequency-ablation, documented by cine-fluoroscopy. Nine patients could be evaluated. The mean errors (range) when using the infinite halfspace, the sphere and the box were 96 (49-125), 21 (5-39), and 36 mm (20-58 mm), respectively (p |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/42.712138 |