Loading…

Lower bounds for the number of closed billiard trajectories of period 2 and 3 in manifolds embedded in Euclidean space

Let T2 be a smooth strictly convex domain bounded by a smooth curve M=T. The billiard ball is a point which moves in T along a straight line and rebounds from M making the angle of incidence equal to the angle of reflection. The classical problem by G. Birkhoff is to find the lower estimate for the...

Full description

Saved in:
Bibliographic Details
Published in:International mathematics research notices 2003-01, Vol.2003 (8), p.425-449
Main Author: Duzhin, Fedor S
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 449
container_issue 8
container_start_page 425
container_title International mathematics research notices
container_volume 2003
creator Duzhin, Fedor S
description Let T2 be a smooth strictly convex domain bounded by a smooth curve M=T. The billiard ball is a point which moves in T along a straight line and rebounds from M making the angle of incidence equal to the angle of reflection. The classical problem by G. Birkhoff is to find the lower estimate for the number of closed billiard trajectories with p reflection points. In this paper, we give a definition of a periodic billiard trajectory in a smooth closed m-dimensional manifold Mn, find a lower bound for the number of 3-periodic billiard trajectories, and give a new proof of P. Pushkar's estimate for 2-periodic trajectories.
doi_str_mv 10.1155/S1073792803202087
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28361686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28361686</sourcerecordid><originalsourceid>FETCH-LOGICAL-p184t-c867cfa540dd3c56c4b226d85d663c3dc658f27d5396370bcb8f1e606caf069f3</originalsourceid><addsrcrecordid>eNotkLtOAzEQRS0EEiHwAXSu6Bb8WD9SoigQpEgUQB15PbZw5NiLvQu_jyOoZnTPzCkuQreU3FMqxMMbJYqrFdOEM8KIVmdoQaVWHWG9Om97w92JX6KrWg-k3VDNF-h7l39cwUOeE1Tsc8HTp8NpPg4tzR7bmKsDPIQYgymAp2IOzk65BFdPfHQlZMAMmwSY45Dw0aTgc2w21yQA7bulm9nGAM4kXEdj3TW68CZWd_M_l-jjafO-3na71-eX9eOuG6nup85qqaw3oicA3App-4ExCVqAlNxysFJozxQIvpJckcEO2lMnibTGE7nyfInu_rxjyV-zq9P-GKp1MZrk8lz3THPZapL8F4QzYEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28361686</pqid></control><display><type>article</type><title>Lower bounds for the number of closed billiard trajectories of period 2 and 3 in manifolds embedded in Euclidean space</title><source>Oxford Journals Online</source><creator>Duzhin, Fedor S</creator><creatorcontrib>Duzhin, Fedor S</creatorcontrib><description>Let T2 be a smooth strictly convex domain bounded by a smooth curve M=T. The billiard ball is a point which moves in T along a straight line and rebounds from M making the angle of incidence equal to the angle of reflection. The classical problem by G. Birkhoff is to find the lower estimate for the number of closed billiard trajectories with p reflection points. In this paper, we give a definition of a periodic billiard trajectory in a smooth closed m-dimensional manifold Mn, find a lower bound for the number of 3-periodic billiard trajectories, and give a new proof of P. Pushkar's estimate for 2-periodic trajectories.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1155/S1073792803202087</identifier><language>eng</language><ispartof>International mathematics research notices, 2003-01, Vol.2003 (8), p.425-449</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Duzhin, Fedor S</creatorcontrib><title>Lower bounds for the number of closed billiard trajectories of period 2 and 3 in manifolds embedded in Euclidean space</title><title>International mathematics research notices</title><description>Let T2 be a smooth strictly convex domain bounded by a smooth curve M=T. The billiard ball is a point which moves in T along a straight line and rebounds from M making the angle of incidence equal to the angle of reflection. The classical problem by G. Birkhoff is to find the lower estimate for the number of closed billiard trajectories with p reflection points. In this paper, we give a definition of a periodic billiard trajectory in a smooth closed m-dimensional manifold Mn, find a lower bound for the number of 3-periodic billiard trajectories, and give a new proof of P. Pushkar's estimate for 2-periodic trajectories.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkLtOAzEQRS0EEiHwAXSu6Bb8WD9SoigQpEgUQB15PbZw5NiLvQu_jyOoZnTPzCkuQreU3FMqxMMbJYqrFdOEM8KIVmdoQaVWHWG9Om97w92JX6KrWg-k3VDNF-h7l39cwUOeE1Tsc8HTp8NpPg4tzR7bmKsDPIQYgymAp2IOzk65BFdPfHQlZMAMmwSY45Dw0aTgc2w21yQA7bulm9nGAM4kXEdj3TW68CZWd_M_l-jjafO-3na71-eX9eOuG6nup85qqaw3oicA3App-4ExCVqAlNxysFJozxQIvpJckcEO2lMnibTGE7nyfInu_rxjyV-zq9P-GKp1MZrk8lz3THPZapL8F4QzYEI</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Duzhin, Fedor S</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030101</creationdate><title>Lower bounds for the number of closed billiard trajectories of period 2 and 3 in manifolds embedded in Euclidean space</title><author>Duzhin, Fedor S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p184t-c867cfa540dd3c56c4b226d85d663c3dc658f27d5396370bcb8f1e606caf069f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duzhin, Fedor S</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duzhin, Fedor S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bounds for the number of closed billiard trajectories of period 2 and 3 in manifolds embedded in Euclidean space</atitle><jtitle>International mathematics research notices</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>2003</volume><issue>8</issue><spage>425</spage><epage>449</epage><pages>425-449</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Let T2 be a smooth strictly convex domain bounded by a smooth curve M=T. The billiard ball is a point which moves in T along a straight line and rebounds from M making the angle of incidence equal to the angle of reflection. The classical problem by G. Birkhoff is to find the lower estimate for the number of closed billiard trajectories with p reflection points. In this paper, we give a definition of a periodic billiard trajectory in a smooth closed m-dimensional manifold Mn, find a lower bound for the number of 3-periodic billiard trajectories, and give a new proof of P. Pushkar's estimate for 2-periodic trajectories.</abstract><doi>10.1155/S1073792803202087</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2003-01, Vol.2003 (8), p.425-449
issn 1073-7928
1687-0247
language eng
recordid cdi_proquest_miscellaneous_28361686
source Oxford Journals Online
title Lower bounds for the number of closed billiard trajectories of period 2 and 3 in manifolds embedded in Euclidean space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bounds%20for%20the%20number%20of%20closed%20billiard%20trajectories%20of%20period%202%20and%203%20in%20manifolds%20embedded%20in%20Euclidean%20space&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Duzhin,%20Fedor%20S&rft.date=2003-01-01&rft.volume=2003&rft.issue=8&rft.spage=425&rft.epage=449&rft.pages=425-449&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1155/S1073792803202087&rft_dat=%3Cproquest%3E28361686%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p184t-c867cfa540dd3c56c4b226d85d663c3dc658f27d5396370bcb8f1e606caf069f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28361686&rft_id=info:pmid/&rfr_iscdi=true