Loading…

Development a novel nomogram model for predicting significant hepatic histological changes in chronic hepatitis B virus carriers

A proportion of chronic hepatitis B virus (HBV) carriers with normal alanine transaminase (ALT) present with significant liver histological changes (SLHC). To construct a noninvasive nomogram model to identify SLHC in chronic HBV carriers with different upper limits of normal (ULNs) for ALT. The tra...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical virology 2023-07, Vol.95 (7), p.e28943-n/a
Main Authors: Kang, Na‐Ling, Gao, Ya‐Hong, Lin, Meng‐Xin, Wu, Lu‐Ying, Ye, Xiang‐Yang, Lin, Hui‐Ming, Ruan, Qing‐Fa, Lin, Shuo, Liu, Hao‐Hang, Huang, Ling‐Ling, Jiang, Jia‐Ji, Liu, Yu‐Rui, Zheng, Qi, Mao, Ri‐Cheng, Zeng, Da‐Wu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A proportion of chronic hepatitis B virus (HBV) carriers with normal alanine transaminase (ALT) present with significant liver histological changes (SLHC). To construct a noninvasive nomogram model to identify SLHC in chronic HBV carriers with different upper limits of normal (ULNs) for ALT. The training cohort consisted of 732 chronic HBV carriers who were stratified into four sets according to different ULNs for ALT: chronic HBV carriers I, II, III, and IV. The external validation cohort comprised 277 chronic HBV carriers. Logistic regression and least absolute shrinkage and selection operator analyses were applied to develop a nomogram model to predict SLHC. A nomogram model‐HBGP (based on hepatitis B surface antigen, gamma‐glutamyl transpeptidase, and platelet count) demonstrated good performance in diagnosing SLHC with area under the curve (AUCs) of 0.866 (95% confidence interval [CI]: 0.839−0.892) and 0.885 (95% CI: 0.845−0.925) in the training and validation cohorts, respectively. Furthermore, HBGP displayed high diagnostic values for SLHC with AUCs of 0.866 (95% CI: 0.839−0.892), 0.868 (95% CI: 0.838−0.898), 0.865 (95% CI: 0.828−0.901), and 0.853 (95% CI: 0.798−0.908) in chronic HBV carriers I, II, III, and IV, respectively. Additionally, HBGP showed greater ability in predicting SLHC compared with the existing predictors. HBGP has shown high predictive performance for SLHC, and thus may lead to an informed decision on the initiation of antiviral treatment.
ISSN:0146-6615
1096-9071
DOI:10.1002/jmv.28943