Loading…

Rapid ice discharge from southeast Greenland glaciers

Interferometric synthetic‐aperture radar (InSAR) observations of southeast Greenland glaciers acquired by the Earth Remote Sensing Satellites (ERS‐1/2) in 1996 were combined with ice sounding radar data collected in the late 1990s to estimate a total discharge of 46 ± 3 km3 ice per year between 62°N...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2004-05, Vol.31 (10), p.L10401.1-n/a
Main Authors: Rignot, E., Braaten, D., Gogineni, S. P., Krabill, W. B., McConnell, J. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interferometric synthetic‐aperture radar (InSAR) observations of southeast Greenland glaciers acquired by the Earth Remote Sensing Satellites (ERS‐1/2) in 1996 were combined with ice sounding radar data collected in the late 1990s to estimate a total discharge of 46 ± 3 km3 ice per year between 62°N and 66°N, which is significantly lower than a mass input of 29 ± 3 km3 ice per year calculated from a recent compilation of snow accumulation data. Further north, Helheim Glacier discharges 23 ± 1 km3/yr vs 30 ± 3 km3/yr accumulation; Kangerdlugssuaq Glacier discharges 29 ± 2 km3/yr vs 23 ± 2 km3/yr; and Daugaard‐Jensen Glacier discharges 10.5 ± 0.6 km3/yr vs 10.5 ± 1 km3/yr. The mass balance of east Greenland glaciers is therefore dominated by the negative mass balance of southeast Greenland glaciers (−17 ± 4 km3/yr), equivalent to a sea level rise of 0.04 ± 0.01 mm/yr. Warmer and drier conditions cannot explain the imbalance which we attribute to long‐term changes in ice dynamics.
ISSN:0094-8276
1944-8007
DOI:10.1029/2004GL019474