Loading…

Quantitative Mapping of Chemical Defects at Charged Grain Boundaries in a Ferroelectric Oxide

Polar discontinuities, as well as compositional and structural changes at oxide interfaces can give rise to a large variety of electronic and ionic phenomena. In contrast to earlier work focused on domain walls and epitaxial systems, this work investigates the relation between polar discontinuities...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2023-09, Vol.35 (38), p.e2302543-e2302543
Main Authors: Hunnestad, Kasper A, Schultheiß, Jan, Mathisen, Anders C, Ushakov, Ivan N, Hatzoglou, Constantinos, van Helvoort, Antonius T J, Meier, Dennis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-5f9c6d0a7bf257a42fc1b1d32b8f5ea2df8d71e46fc109b4d09df1651c6134803
cites cdi_FETCH-LOGICAL-c363t-5f9c6d0a7bf257a42fc1b1d32b8f5ea2df8d71e46fc109b4d09df1651c6134803
container_end_page e2302543
container_issue 38
container_start_page e2302543
container_title Advanced materials (Weinheim)
container_volume 35
creator Hunnestad, Kasper A
Schultheiß, Jan
Mathisen, Anders C
Ushakov, Ivan N
Hatzoglou, Constantinos
van Helvoort, Antonius T J
Meier, Dennis
description Polar discontinuities, as well as compositional and structural changes at oxide interfaces can give rise to a large variety of electronic and ionic phenomena. In contrast to earlier work focused on domain walls and epitaxial systems, this work investigates the relation between polar discontinuities and the local chemistry at grain boundaries in polycrystalline ferroelectric ErMnO . Using orientation mapping and scanning probe microscopy (SPM) techniques, the polycrystalline material is demonstrated to develop charged grain boundaries with enhanced electronic conductance. By performing atom probe tomography (APT) measurements, an enrichment of erbium and a depletion of oxygen at all grain boundaries are found. The observed compositional changes translate into a charge that exceeds possible polarization-driven effects, demonstrating that structural phenomena rather than electrostatics determine the local chemical composition and related changes in the electronic transport behavior. The study shows that the charged grain boundaries behave distinctly different from charged domain walls, giving additional opportunities for property engineering at polar oxide interfaces.
doi_str_mv 10.1002/adma.202302543
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2838249853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866686937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5f9c6d0a7bf257a42fc1b1d32b8f5ea2df8d71e46fc109b4d09df1651c6134803</originalsourceid><addsrcrecordid>eNpdkE1PFTEUhhuigSu6ZUmauHEz135Pu4SLoAmGmOjSTM60p1AyH5d2xui_twRk4erkvHnOm5OHkBPOtpwx8RHCCFvBhGRCK3lANlwL3ijm9CuyYU7qxhllj8ibUu4ZY84wc0iOZKu0aLndkJ_fVpiWtMCSfiH9Cvt9mm7pHOnuDsfkYaAXGNEvhcJSM8i3GOhVhjTR83mdAuSEhdYN6CXmPONQ4Zw8vfmdAr4lryMMBd89z2Py4_LT993n5vrm6svu7Lrx0sil0dF5Exi0fRS6BSWi5z0PUvQ2agQRog0tR2VqzlyvAnMhcqO5N1wqy-Qx-fDUu8_zw4pl6cZUPA4DTDivpRNWWqGc1bKi7_9D7-c1T_W7ShljrHGyrdT2ifJ5LiVj7PY5jZD_dJx1j-K7R_Hdi_h6cPpcu_Yjhhf8n2n5F_IbfdM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866686937</pqid></control><display><type>article</type><title>Quantitative Mapping of Chemical Defects at Charged Grain Boundaries in a Ferroelectric Oxide</title><source>Wiley</source><creator>Hunnestad, Kasper A ; Schultheiß, Jan ; Mathisen, Anders C ; Ushakov, Ivan N ; Hatzoglou, Constantinos ; van Helvoort, Antonius T J ; Meier, Dennis</creator><creatorcontrib>Hunnestad, Kasper A ; Schultheiß, Jan ; Mathisen, Anders C ; Ushakov, Ivan N ; Hatzoglou, Constantinos ; van Helvoort, Antonius T J ; Meier, Dennis</creatorcontrib><description>Polar discontinuities, as well as compositional and structural changes at oxide interfaces can give rise to a large variety of electronic and ionic phenomena. In contrast to earlier work focused on domain walls and epitaxial systems, this work investigates the relation between polar discontinuities and the local chemistry at grain boundaries in polycrystalline ferroelectric ErMnO . Using orientation mapping and scanning probe microscopy (SPM) techniques, the polycrystalline material is demonstrated to develop charged grain boundaries with enhanced electronic conductance. By performing atom probe tomography (APT) measurements, an enrichment of erbium and a depletion of oxygen at all grain boundaries are found. The observed compositional changes translate into a charge that exceeds possible polarization-driven effects, demonstrating that structural phenomena rather than electrostatics determine the local chemical composition and related changes in the electronic transport behavior. The study shows that the charged grain boundaries behave distinctly different from charged domain walls, giving additional opportunities for property engineering at polar oxide interfaces.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202302543</identifier><identifier>PMID: 37452718</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chemical composition ; Crystal defects ; Discontinuity ; Domain walls ; Electron transport ; Electrostatics ; Erbium ; Ferroelectric materials ; Ferroelectricity ; Grain boundaries ; Mapping ; Materials science ; Oxygen enrichment ; Polycrystals ; Scanning probe microscopy</subject><ispartof>Advanced materials (Weinheim), 2023-09, Vol.35 (38), p.e2302543-e2302543</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5f9c6d0a7bf257a42fc1b1d32b8f5ea2df8d71e46fc109b4d09df1651c6134803</citedby><cites>FETCH-LOGICAL-c363t-5f9c6d0a7bf257a42fc1b1d32b8f5ea2df8d71e46fc109b4d09df1651c6134803</cites><orcidid>0000-0001-6437-1474 ; 0000-0003-1732-3634 ; 0000-0001-7389-1295 ; 0000-0002-8623-6705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37452718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunnestad, Kasper A</creatorcontrib><creatorcontrib>Schultheiß, Jan</creatorcontrib><creatorcontrib>Mathisen, Anders C</creatorcontrib><creatorcontrib>Ushakov, Ivan N</creatorcontrib><creatorcontrib>Hatzoglou, Constantinos</creatorcontrib><creatorcontrib>van Helvoort, Antonius T J</creatorcontrib><creatorcontrib>Meier, Dennis</creatorcontrib><title>Quantitative Mapping of Chemical Defects at Charged Grain Boundaries in a Ferroelectric Oxide</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Polar discontinuities, as well as compositional and structural changes at oxide interfaces can give rise to a large variety of electronic and ionic phenomena. In contrast to earlier work focused on domain walls and epitaxial systems, this work investigates the relation between polar discontinuities and the local chemistry at grain boundaries in polycrystalline ferroelectric ErMnO . Using orientation mapping and scanning probe microscopy (SPM) techniques, the polycrystalline material is demonstrated to develop charged grain boundaries with enhanced electronic conductance. By performing atom probe tomography (APT) measurements, an enrichment of erbium and a depletion of oxygen at all grain boundaries are found. The observed compositional changes translate into a charge that exceeds possible polarization-driven effects, demonstrating that structural phenomena rather than electrostatics determine the local chemical composition and related changes in the electronic transport behavior. The study shows that the charged grain boundaries behave distinctly different from charged domain walls, giving additional opportunities for property engineering at polar oxide interfaces.</description><subject>Chemical composition</subject><subject>Crystal defects</subject><subject>Discontinuity</subject><subject>Domain walls</subject><subject>Electron transport</subject><subject>Electrostatics</subject><subject>Erbium</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Grain boundaries</subject><subject>Mapping</subject><subject>Materials science</subject><subject>Oxygen enrichment</subject><subject>Polycrystals</subject><subject>Scanning probe microscopy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PFTEUhhuigSu6ZUmauHEz135Pu4SLoAmGmOjSTM60p1AyH5d2xui_twRk4erkvHnOm5OHkBPOtpwx8RHCCFvBhGRCK3lANlwL3ijm9CuyYU7qxhllj8ibUu4ZY84wc0iOZKu0aLndkJ_fVpiWtMCSfiH9Cvt9mm7pHOnuDsfkYaAXGNEvhcJSM8i3GOhVhjTR83mdAuSEhdYN6CXmPONQ4Zw8vfmdAr4lryMMBd89z2Py4_LT993n5vrm6svu7Lrx0sil0dF5Exi0fRS6BSWi5z0PUvQ2agQRog0tR2VqzlyvAnMhcqO5N1wqy-Qx-fDUu8_zw4pl6cZUPA4DTDivpRNWWqGc1bKi7_9D7-c1T_W7ShljrHGyrdT2ifJ5LiVj7PY5jZD_dJx1j-K7R_Hdi_h6cPpcu_Yjhhf8n2n5F_IbfdM</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Hunnestad, Kasper A</creator><creator>Schultheiß, Jan</creator><creator>Mathisen, Anders C</creator><creator>Ushakov, Ivan N</creator><creator>Hatzoglou, Constantinos</creator><creator>van Helvoort, Antonius T J</creator><creator>Meier, Dennis</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6437-1474</orcidid><orcidid>https://orcid.org/0000-0003-1732-3634</orcidid><orcidid>https://orcid.org/0000-0001-7389-1295</orcidid><orcidid>https://orcid.org/0000-0002-8623-6705</orcidid></search><sort><creationdate>20230901</creationdate><title>Quantitative Mapping of Chemical Defects at Charged Grain Boundaries in a Ferroelectric Oxide</title><author>Hunnestad, Kasper A ; Schultheiß, Jan ; Mathisen, Anders C ; Ushakov, Ivan N ; Hatzoglou, Constantinos ; van Helvoort, Antonius T J ; Meier, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5f9c6d0a7bf257a42fc1b1d32b8f5ea2df8d71e46fc109b4d09df1651c6134803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical composition</topic><topic>Crystal defects</topic><topic>Discontinuity</topic><topic>Domain walls</topic><topic>Electron transport</topic><topic>Electrostatics</topic><topic>Erbium</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Grain boundaries</topic><topic>Mapping</topic><topic>Materials science</topic><topic>Oxygen enrichment</topic><topic>Polycrystals</topic><topic>Scanning probe microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunnestad, Kasper A</creatorcontrib><creatorcontrib>Schultheiß, Jan</creatorcontrib><creatorcontrib>Mathisen, Anders C</creatorcontrib><creatorcontrib>Ushakov, Ivan N</creatorcontrib><creatorcontrib>Hatzoglou, Constantinos</creatorcontrib><creatorcontrib>van Helvoort, Antonius T J</creatorcontrib><creatorcontrib>Meier, Dennis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunnestad, Kasper A</au><au>Schultheiß, Jan</au><au>Mathisen, Anders C</au><au>Ushakov, Ivan N</au><au>Hatzoglou, Constantinos</au><au>van Helvoort, Antonius T J</au><au>Meier, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Mapping of Chemical Defects at Charged Grain Boundaries in a Ferroelectric Oxide</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>35</volume><issue>38</issue><spage>e2302543</spage><epage>e2302543</epage><pages>e2302543-e2302543</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Polar discontinuities, as well as compositional and structural changes at oxide interfaces can give rise to a large variety of electronic and ionic phenomena. In contrast to earlier work focused on domain walls and epitaxial systems, this work investigates the relation between polar discontinuities and the local chemistry at grain boundaries in polycrystalline ferroelectric ErMnO . Using orientation mapping and scanning probe microscopy (SPM) techniques, the polycrystalline material is demonstrated to develop charged grain boundaries with enhanced electronic conductance. By performing atom probe tomography (APT) measurements, an enrichment of erbium and a depletion of oxygen at all grain boundaries are found. The observed compositional changes translate into a charge that exceeds possible polarization-driven effects, demonstrating that structural phenomena rather than electrostatics determine the local chemical composition and related changes in the electronic transport behavior. The study shows that the charged grain boundaries behave distinctly different from charged domain walls, giving additional opportunities for property engineering at polar oxide interfaces.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37452718</pmid><doi>10.1002/adma.202302543</doi><orcidid>https://orcid.org/0000-0001-6437-1474</orcidid><orcidid>https://orcid.org/0000-0003-1732-3634</orcidid><orcidid>https://orcid.org/0000-0001-7389-1295</orcidid><orcidid>https://orcid.org/0000-0002-8623-6705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-09, Vol.35 (38), p.e2302543-e2302543
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2838249853
source Wiley
subjects Chemical composition
Crystal defects
Discontinuity
Domain walls
Electron transport
Electrostatics
Erbium
Ferroelectric materials
Ferroelectricity
Grain boundaries
Mapping
Materials science
Oxygen enrichment
Polycrystals
Scanning probe microscopy
title Quantitative Mapping of Chemical Defects at Charged Grain Boundaries in a Ferroelectric Oxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Mapping%20of%20Chemical%20Defects%20at%20Charged%20Grain%20Boundaries%20in%20a%20Ferroelectric%20Oxide&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hunnestad,%20Kasper%20A&rft.date=2023-09-01&rft.volume=35&rft.issue=38&rft.spage=e2302543&rft.epage=e2302543&rft.pages=e2302543-e2302543&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202302543&rft_dat=%3Cproquest_cross%3E2866686937%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-5f9c6d0a7bf257a42fc1b1d32b8f5ea2df8d71e46fc109b4d09df1651c6134803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866686937&rft_id=info:pmid/37452718&rfr_iscdi=true