Loading…

DjFARP Contributes to the Regeneration and Maintenance of the Brain through Activation of DjRac1 in Dugesia japonica

FERM, RhoGEF, and Pleckstrin domain protein (FARP) mediated RhoGTPase pathways are involved in diverse biological processes, such as neuronal development and tumorigenesis. However, little is known about their role in neural regeneration. We uncovered for the first time that FARP-Rac1 signaling play...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurobiology 2023-11, Vol.60 (11), p.6294-6306
Main Authors: Song, Qian, Geng, Huazhi, Zhen, Hui, Liu, Hongjin, Deng, Hongkuan, Yuan, Zuoqing, Zhang, Jianyong, Cao, Zhonghong, Pang, Qiuxiang, Zhao, Bosheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:FERM, RhoGEF, and Pleckstrin domain protein (FARP) mediated RhoGTPase pathways are involved in diverse biological processes, such as neuronal development and tumorigenesis. However, little is known about their role in neural regeneration. We uncovered for the first time that FARP-Rac1 signaling plays an important role in neural regeneration in Dugesia japonica , a planarian that possesses unparalleled regenerative capacities. The planarian FARP homolog DjFARP was primarily expressed in both intact and regenerating brain and pharynx tissue. Functional studies suggested that downregulation of DjFARP with dsRNA in Dugesia japonica led to smaller brain sizes, defects in brain lateral branches, and loss of cholinergic, GABAergic, and dopaminergic neurons in both intact and regenerating animals. Moreover, the Rho GTPase DjRac1 was shown to play a similar role in neural regeneration and maintenance. Rac1 activation assay showed that DjFARP acts as a guanine nucleotide exchange factor (GEF) for DjRac1. Together, these findings indicate that the brain defects seen in DjFARP knockdown animals may be attributable to DjRac1 inactivation. In conclusion, our study demonstrated that DjFARP-DjRac1 signaling was required for the maintenance and proper regeneration of the brain in Dugesia japonica .
ISSN:0893-7648
1559-1182
DOI:10.1007/s12035-023-03478-6