Loading…
Epigenetic reprogramming around IFN1 and IFNy2 promoters in rainbow trout cells inoculated with infectious pancreatic necrosis virus (IPNV)
Infectious pancreatic necrosis virus (IPNV) has proven to effectively evade the host antiviral responses. This study clarifies whether the modulation of the antiviral immune response exerted by IPNV involves epigenetic mechanisms. An in-silico characterization of the rainbow trout IFN1 and IFNγ2 pro...
Saved in:
Published in: | Fish & shellfish immunology 2023-09, Vol.140, p.108947-108947, Article 108947 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Infectious pancreatic necrosis virus (IPNV) has proven to effectively evade the host antiviral responses. This study clarifies whether the modulation of the antiviral immune response exerted by IPNV involves epigenetic mechanisms. An in-silico characterization of the rainbow trout IFN1 and IFNγ2 promoters was performed, identifying the islands or sequences rich in CpG dinucleotides and the putative transcription factor binding sites (TBS) for both gene promoters. RTS11 cells (rainbow trout monocyte/macrophage) were infected with IPNV, and the course of viral infection was followed up to 48 h post infection (hpi). Infected cells showed increased IFN1 and IFNγ2 transcriptional expression at 6 and 24 hpi, respectively. IPNV infection caused increases and decreases in global IFNγ2 promoter methylation at 6 and 24 hpi, respectively. The CpG dinucleotides at positions −392 and + 38 of this promoter were the most sensitive to methylation changes. The IFN1 promoter remained fully unmethylated during the course of the infection, similar to the control. The changes in the methylation pattern observed for the IFNγ2 promoter were coincident with the changes in DNA methyltransferase (DNMT) expression levels, increasing at 6 hpi and decreasing below basal level at 24 hpi. Similarly, the H4 histones associated with the IFN1 and IFNγ2 promoters were hyperacetylated at 6 hpi, subsequently decreasing their acetylation below basal levels at 24 hpi, in both promoters. Coincidentally with the above, overexpression of histone acetyltransferase (HAT) was observed at 6 hpi and of histone deacetylase (HDAC) at 24 hpi, with return to baseline of HAT. These results suggest that IPNV would epigenetically modulate the expression of IFN1 by changing acetylation levels of the histones H4 associated with its promoter. Also, the modulation of the expression of IFNy2 would be by switching methylation/demethylation levels of its promoter, in addition to changes in acetylation levels of histones H4 associated with this promoter. This study is the first to demonstrate the effect of epigenetic reprogramming after IPNV infection in salmonid cells, demonstrating that promoter methylation/demethylation level and changes in the histone code associated with promoters may play a role in the modulation of the immune response induced by the virus.
•IPNV affects the expression levels of IFN1, IFNγ, DNMT1, HAT and HDA.•IPNV temporarily modulates IFNγ promoter methylation levels.•IPNV modulates the acety |
---|---|
ISSN: | 1050-4648 1095-9947 |
DOI: | 10.1016/j.fsi.2023.108947 |