Loading…
Enhancing the catalytic performance of MOF-polymer@AuNP-based nanozymes for colorimetric detection of serum L-cysteine
The dispersion of gold nanoparticles (AuNPs) on a metal-organic framework (MOF) surface greatly affects the catalytic activity of the material. However, regulating the catalytic performance of AuNP-MOF composite-based nanozymes is a great challenge. Herein, poly(dimethylvinyloxazolinone) (PV) was ch...
Saved in:
Published in: | Analyst (London) 2023-08, Vol.148 (16), p.3785-3790 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dispersion of gold nanoparticles (AuNPs) on a metal-organic framework (MOF) surface greatly affects the catalytic activity of the material. However, regulating the catalytic performance of AuNP-MOF composite-based nanozymes is a great challenge. Herein, poly(dimethylvinyloxazolinone) (PV) was chemically bonded on the surface of UiO-66-NH
(U66), followed by modification of pepsin (Pep) on the PV chains. U66-PV-Pep@AuNP composite nanozymes were fabricated after the AuNPs formed
with Pep as the capping and reducing reagent. Compared to Pep@AuNPs that were physically adsorbed onto the surface of U66, the U66-PV-Pep@AuNP composites exhibited superior peroxidase (POD)-mimetic activity in the oxidation of 3,3'5,5'-tetramethylbenzidine (TMB) with H
O
. Considering the surface dispersion uniformity and local concentration of Pep@AuNPs on the surface of the U66-PV-Pep@AuNP composites, the principle for improving the catalytic performance of the proposed nanozymes was explored. Furthermore, it was observed that the introduction of L-cysteine (L-Cys) into the U66-PV-Pep@AuNP-TMB-H
O
system significantly reduced its oxidation activity and faded the color, allowing the development of a highly selective and sensitive colorimetric method for L-Cys detection. The UV-vis absorption intensity of oxTMB showed a good linear relationship with the concentration of L-Cys in the range of 2.5-40.0 μM (
= 0.996), with a detection limit of 0.33 μM. The proposed protocol using U66-PV-Pep@AuNP nanozymes was applied to monitor rat serum L-Cys following intraperitoneal injection. This study paves the way for the design and construction of MOF-polymer@AuNP nanozymes for drug detection in real bio-samples. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/d3an00917c |