Loading…

Image segmentation by unifying region and boundary information

A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 1990-10, Vol.12 (10), p.929-948
Main Authors: Haddon, J.F., Boyce, J.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503
cites cdi_FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503
container_end_page 948
container_issue 10
container_start_page 929
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 12
creator Haddon, J.F.
Boyce, J.F.
description A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given.< >
doi_str_mv 10.1109/34.58867
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28397112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>58867</ieee_id><sourcerecordid>28397112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503</originalsourceid><addsrcrecordid>eNqF0EtLw0AQB_BFFKxV8OotF8VL6r4fF0GKj0LBi57DZjMJK82m7iaHfnvTpujR08DMjz8zg9A1wQtCsHlgfCG0luoEzYhhJmeCmVM0w0TSXGuqz9FFSl8YEy4wm6HHVWsbyBI0LYTe9r4LWbnLhuDrnQ9NFqHZt2yosrIbQmXjLvOh7mJ7sJforLabBFfHOkefL88fy7d8_f66Wj6tc8ck73NhuaKUQlUK4iSRpbbSGGEUmFJZIwWvK1ERRjB3EpRTVGsuS0qAYYBx0Tm6m3K3sfseIPVF65ODzcYG6IZUUM2MIoT-D4ViTBoywvsJutilFKEuttG343kFwcX-kwXjxeGTI709Ztrk7KaONjif_rwRxHC2dzeT8wDwO54yfgDacXl_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25733691</pqid></control><display><type>article</type><title>Image segmentation by unifying region and boundary information</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Haddon, J.F. ; Boyce, J.F.</creator><creatorcontrib>Haddon, J.F. ; Boyce, J.F.</creatorcontrib><description>A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.58867</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Entropy ; Exact sciences and technology ; Image analysis ; Image processing ; Image segmentation ; Image sequences ; Infrared imaging ; Interference ; Labeling ; Pattern recognition. Digital image processing. Computational geometry ; Robustness ; Statistics</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1990-10, Vol.12 (10), p.929-948</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503</citedby><cites>FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/58867$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19519437$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haddon, J.F.</creatorcontrib><creatorcontrib>Boyce, J.F.</creatorcontrib><title>Image segmentation by unifying region and boundary information</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given.&lt; &gt;</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Infrared imaging</subject><subject>Interference</subject><subject>Labeling</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robustness</subject><subject>Statistics</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLw0AQB_BFFKxV8OotF8VL6r4fF0GKj0LBi57DZjMJK82m7iaHfnvTpujR08DMjz8zg9A1wQtCsHlgfCG0luoEzYhhJmeCmVM0w0TSXGuqz9FFSl8YEy4wm6HHVWsbyBI0LYTe9r4LWbnLhuDrnQ9NFqHZt2yosrIbQmXjLvOh7mJ7sJforLabBFfHOkefL88fy7d8_f66Wj6tc8ck73NhuaKUQlUK4iSRpbbSGGEUmFJZIwWvK1ERRjB3EpRTVGsuS0qAYYBx0Tm6m3K3sfseIPVF65ODzcYG6IZUUM2MIoT-D4ViTBoywvsJutilFKEuttG343kFwcX-kwXjxeGTI709Ztrk7KaONjif_rwRxHC2dzeT8wDwO54yfgDacXl_</recordid><startdate>19901001</startdate><enddate>19901001</enddate><creator>Haddon, J.F.</creator><creator>Boyce, J.F.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19901001</creationdate><title>Image segmentation by unifying region and boundary information</title><author>Haddon, J.F. ; Boyce, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Infrared imaging</topic><topic>Interference</topic><topic>Labeling</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robustness</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddon, J.F.</creatorcontrib><creatorcontrib>Boyce, J.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddon, J.F.</au><au>Boyce, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image segmentation by unifying region and boundary information</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1990-10-01</date><risdate>1990</risdate><volume>12</volume><issue>10</issue><spage>929</spage><epage>948</epage><pages>929-948</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.58867</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1990-10, Vol.12 (10), p.929-948
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_28397112
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Entropy
Exact sciences and technology
Image analysis
Image processing
Image segmentation
Image sequences
Infrared imaging
Interference
Labeling
Pattern recognition. Digital image processing. Computational geometry
Robustness
Statistics
title Image segmentation by unifying region and boundary information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20segmentation%20by%20unifying%20region%20and%20boundary%20information&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Haddon,%20J.F.&rft.date=1990-10-01&rft.volume=12&rft.issue=10&rft.spage=929&rft.epage=948&rft.pages=929-948&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.58867&rft_dat=%3Cproquest_cross%3E28397112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25733691&rft_id=info:pmid/&rft_ieee_id=58867&rfr_iscdi=true