Loading…
Image segmentation by unifying region and boundary information
A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 1990-10, Vol.12 (10), p.929-948 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503 |
container_end_page | 948 |
container_issue | 10 |
container_start_page | 929 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 12 |
creator | Haddon, J.F. Boyce, J.F. |
description | A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given.< > |
doi_str_mv | 10.1109/34.58867 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28397112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>58867</ieee_id><sourcerecordid>28397112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503</originalsourceid><addsrcrecordid>eNqF0EtLw0AQB_BFFKxV8OotF8VL6r4fF0GKj0LBi57DZjMJK82m7iaHfnvTpujR08DMjz8zg9A1wQtCsHlgfCG0luoEzYhhJmeCmVM0w0TSXGuqz9FFSl8YEy4wm6HHVWsbyBI0LYTe9r4LWbnLhuDrnQ9NFqHZt2yosrIbQmXjLvOh7mJ7sJforLabBFfHOkefL88fy7d8_f66Wj6tc8ck73NhuaKUQlUK4iSRpbbSGGEUmFJZIwWvK1ERRjB3EpRTVGsuS0qAYYBx0Tm6m3K3sfseIPVF65ODzcYG6IZUUM2MIoT-D4ViTBoywvsJutilFKEuttG343kFwcX-kwXjxeGTI709Ztrk7KaONjif_rwRxHC2dzeT8wDwO54yfgDacXl_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25733691</pqid></control><display><type>article</type><title>Image segmentation by unifying region and boundary information</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Haddon, J.F. ; Boyce, J.F.</creator><creatorcontrib>Haddon, J.F. ; Boyce, J.F.</creatorcontrib><description>A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given.< ></description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.58867</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Entropy ; Exact sciences and technology ; Image analysis ; Image processing ; Image segmentation ; Image sequences ; Infrared imaging ; Interference ; Labeling ; Pattern recognition. Digital image processing. Computational geometry ; Robustness ; Statistics</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1990-10, Vol.12 (10), p.929-948</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503</citedby><cites>FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/58867$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19519437$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haddon, J.F.</creatorcontrib><creatorcontrib>Boyce, J.F.</creatorcontrib><title>Image segmentation by unifying region and boundary information</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given.< ></description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Image sequences</subject><subject>Infrared imaging</subject><subject>Interference</subject><subject>Labeling</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robustness</subject><subject>Statistics</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqF0EtLw0AQB_BFFKxV8OotF8VL6r4fF0GKj0LBi57DZjMJK82m7iaHfnvTpujR08DMjz8zg9A1wQtCsHlgfCG0luoEzYhhJmeCmVM0w0TSXGuqz9FFSl8YEy4wm6HHVWsbyBI0LYTe9r4LWbnLhuDrnQ9NFqHZt2yosrIbQmXjLvOh7mJ7sJforLabBFfHOkefL88fy7d8_f66Wj6tc8ck73NhuaKUQlUK4iSRpbbSGGEUmFJZIwWvK1ERRjB3EpRTVGsuS0qAYYBx0Tm6m3K3sfseIPVF65ODzcYG6IZUUM2MIoT-D4ViTBoywvsJutilFKEuttG343kFwcX-kwXjxeGTI709Ztrk7KaONjif_rwRxHC2dzeT8wDwO54yfgDacXl_</recordid><startdate>19901001</startdate><enddate>19901001</enddate><creator>Haddon, J.F.</creator><creator>Boyce, J.F.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19901001</creationdate><title>Image segmentation by unifying region and boundary information</title><author>Haddon, J.F. ; Boyce, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Image sequences</topic><topic>Infrared imaging</topic><topic>Interference</topic><topic>Labeling</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robustness</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haddon, J.F.</creatorcontrib><creatorcontrib>Boyce, J.F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddon, J.F.</au><au>Boyce, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image segmentation by unifying region and boundary information</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1990-10-01</date><risdate>1990</risdate><volume>12</volume><issue>10</issue><spage>929</spage><epage>948</epage><pages>929-948</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given.< ></abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.58867</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1990-10, Vol.12 (10), p.929-948 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_28397112 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Entropy Exact sciences and technology Image analysis Image processing Image segmentation Image sequences Infrared imaging Interference Labeling Pattern recognition. Digital image processing. Computational geometry Robustness Statistics |
title | Image segmentation by unifying region and boundary information |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20segmentation%20by%20unifying%20region%20and%20boundary%20information&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Haddon,%20J.F.&rft.date=1990-10-01&rft.volume=12&rft.issue=10&rft.spage=929&rft.epage=948&rft.pages=929-948&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.58867&rft_dat=%3Cproquest_cross%3E28397112%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-5a47222edb51c616b8a699597e9b7a9654fd5d13104c6e7c728846b21e30ee503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25733691&rft_id=info:pmid/&rft_ieee_id=58867&rfr_iscdi=true |