Loading…

Highly Selective Synthesis of Monoclinic-Phased Platinum–Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis

Designing efficient formic acid oxidation reaction (FAOR) catalysts with remarkable membrane electrode assembly (MEA) performance in a direct formic acid fuel cell (DFAFC) medium is significant yet challenging. Herein, we report that the monoclinic-phased platinum–tellurium nanotrepang (m-PtTe NT) c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2023-07, Vol.145 (28), p.15393-15404
Main Authors: Dong, Chengyuan, Wang, Xinyao, Zhu, Zhipeng, Zhan, Changhong, Lin, Xin, Bu, Lingzheng, Ye, Jinyu, Wang, Yucheng, Liu, Wei, Huang, Xiaoqing
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a324t-529be5dff12c7cc8bbb0f7000c706f38311e64dceecd76c088a83d1e6cfdb85b3
cites cdi_FETCH-LOGICAL-a324t-529be5dff12c7cc8bbb0f7000c706f38311e64dceecd76c088a83d1e6cfdb85b3
container_end_page 15404
container_issue 28
container_start_page 15393
container_title Journal of the American Chemical Society
container_volume 145
creator Dong, Chengyuan
Wang, Xinyao
Zhu, Zhipeng
Zhan, Changhong
Lin, Xin
Bu, Lingzheng
Ye, Jinyu
Wang, Yucheng
Liu, Wei
Huang, Xiaoqing
description Designing efficient formic acid oxidation reaction (FAOR) catalysts with remarkable membrane electrode assembly (MEA) performance in a direct formic acid fuel cell (DFAFC) medium is significant yet challenging. Herein, we report that the monoclinic-phased platinum–tellurium nanotrepang (m-PtTe NT) can be adopted as a highly active, selective, and stable FAOR catalyst with a desirable direct reaction pathway. The m-PtTe NT exhibits the high specific and mass activities of 6.78 mA cm–2 and 3.2 A mgPt –1, respectively, which are 35.7/22.9, 2.8/2.6, and 3.9/2.9 times higher than those of commercial Pt/C, rhombohedral-phased Pt2Te3 NT (r-Pt2Te3 NT), and trigonal-phased PtTe2 NT (t-PtTe2 NT), respectively. Simultaneously, the highest reaction tendency for the direct FAOR pathway and the best tolerance to poisonous CO intermediate can also be realized by m-PtTe NT. More importantly, even in a single-cell medium, the m-PtTe NT can display a much higher MEA power density (171.4 mW cm–2) and stability (53.2% voltage loss after 5660 s) than those of commercial Pt/C, demonstrating the great potential in operating DFAFC device. The in-situ Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy jointly demonstrate that the unique nanostructure of m-PtTe NT can effectively optimize dehydrogenation steps and inhibit the CO intermediate adsorption, as well as promote the oxidation of noxious CO intermediate, thus achieving the great improvement of FAOR activity, poisoning tolerance, and stability. Density functional theory calculations further reveal that the direct pathway is the most favorable on m-PtTe NT than r-Pt2Te3 NT and t-PtTe2 NT. The higher activation energy to produce CO and the relatively weaker binding with CO of m-PtTe NT result in the better CO tolerance. This work achieves remarkable FAOR and MEA performances of advanced Pt-based anodic catalysts for DFAFCs via a phase engineering strategy.
doi_str_mv 10.1021/jacs.3c03317
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2839739130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839739130</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-529be5dff12c7cc8bbb0f7000c706f38311e64dceecd76c088a83d1e6cfdb85b3</originalsourceid><addsrcrecordid>eNptULluGzEQJQIHluy4Sx2wdOF1eOxBlYZ8Ar4AOfWCOyQlCrukQu4aFtz4H_KH-RJTkJw0rgYzeMe8h9B3Sk4pYfTnUkI85UA4p9UXNKYFI1lBWbmHxoQQllWi5CN0EOMyrTkTdB-NeJWzCWH5GL1e2_miXeOZbjX09lnj2dr1Cx1txN7gO-88tNZZyB4XMmqFH1vZWzd0f9_-POm2HYIdOnwvne-DXkk3x8YHfG5DUsOXPnQW8BlYhR9erEpM7_BU9rJdJ4Nv6KuRbdRHu3mIfl1ePE2vs9uHq5vp2W0mOcv7rGCTRhfKGMqgAhBN0xBTpTBQkdJwwSnVZa5Aa1BVCUQIKbhKNzCqEUXDD9HxVncV_O9Bx77ubIT0vHTaD7Fmgk8qPqGcJOjJFgrBxxi0qVfBdjKsa0rqTd31pu56V3eC_9gpD02n1T_wR7__rTespR-CS0E_13oHII2MYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839739130</pqid></control><display><type>article</type><title>Highly Selective Synthesis of Monoclinic-Phased Platinum–Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Dong, Chengyuan ; Wang, Xinyao ; Zhu, Zhipeng ; Zhan, Changhong ; Lin, Xin ; Bu, Lingzheng ; Ye, Jinyu ; Wang, Yucheng ; Liu, Wei ; Huang, Xiaoqing</creator><creatorcontrib>Dong, Chengyuan ; Wang, Xinyao ; Zhu, Zhipeng ; Zhan, Changhong ; Lin, Xin ; Bu, Lingzheng ; Ye, Jinyu ; Wang, Yucheng ; Liu, Wei ; Huang, Xiaoqing</creatorcontrib><description>Designing efficient formic acid oxidation reaction (FAOR) catalysts with remarkable membrane electrode assembly (MEA) performance in a direct formic acid fuel cell (DFAFC) medium is significant yet challenging. Herein, we report that the monoclinic-phased platinum–tellurium nanotrepang (m-PtTe NT) can be adopted as a highly active, selective, and stable FAOR catalyst with a desirable direct reaction pathway. The m-PtTe NT exhibits the high specific and mass activities of 6.78 mA cm–2 and 3.2 A mgPt –1, respectively, which are 35.7/22.9, 2.8/2.6, and 3.9/2.9 times higher than those of commercial Pt/C, rhombohedral-phased Pt2Te3 NT (r-Pt2Te3 NT), and trigonal-phased PtTe2 NT (t-PtTe2 NT), respectively. Simultaneously, the highest reaction tendency for the direct FAOR pathway and the best tolerance to poisonous CO intermediate can also be realized by m-PtTe NT. More importantly, even in a single-cell medium, the m-PtTe NT can display a much higher MEA power density (171.4 mW cm–2) and stability (53.2% voltage loss after 5660 s) than those of commercial Pt/C, demonstrating the great potential in operating DFAFC device. The in-situ Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy jointly demonstrate that the unique nanostructure of m-PtTe NT can effectively optimize dehydrogenation steps and inhibit the CO intermediate adsorption, as well as promote the oxidation of noxious CO intermediate, thus achieving the great improvement of FAOR activity, poisoning tolerance, and stability. Density functional theory calculations further reveal that the direct pathway is the most favorable on m-PtTe NT than r-Pt2Te3 NT and t-PtTe2 NT. The higher activation energy to produce CO and the relatively weaker binding with CO of m-PtTe NT result in the better CO tolerance. This work achieves remarkable FAOR and MEA performances of advanced Pt-based anodic catalysts for DFAFCs via a phase engineering strategy.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c03317</identifier><identifier>PMID: 37429024</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-07, Vol.145 (28), p.15393-15404</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-529be5dff12c7cc8bbb0f7000c706f38311e64dceecd76c088a83d1e6cfdb85b3</citedby><cites>FETCH-LOGICAL-a324t-529be5dff12c7cc8bbb0f7000c706f38311e64dceecd76c088a83d1e6cfdb85b3</cites><orcidid>0000-0003-3016-7381 ; 0000-0003-2672-0420 ; 0000-0002-3356-3403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37429024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chengyuan</creatorcontrib><creatorcontrib>Wang, Xinyao</creatorcontrib><creatorcontrib>Zhu, Zhipeng</creatorcontrib><creatorcontrib>Zhan, Changhong</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Bu, Lingzheng</creatorcontrib><creatorcontrib>Ye, Jinyu</creatorcontrib><creatorcontrib>Wang, Yucheng</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><title>Highly Selective Synthesis of Monoclinic-Phased Platinum–Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Designing efficient formic acid oxidation reaction (FAOR) catalysts with remarkable membrane electrode assembly (MEA) performance in a direct formic acid fuel cell (DFAFC) medium is significant yet challenging. Herein, we report that the monoclinic-phased platinum–tellurium nanotrepang (m-PtTe NT) can be adopted as a highly active, selective, and stable FAOR catalyst with a desirable direct reaction pathway. The m-PtTe NT exhibits the high specific and mass activities of 6.78 mA cm–2 and 3.2 A mgPt –1, respectively, which are 35.7/22.9, 2.8/2.6, and 3.9/2.9 times higher than those of commercial Pt/C, rhombohedral-phased Pt2Te3 NT (r-Pt2Te3 NT), and trigonal-phased PtTe2 NT (t-PtTe2 NT), respectively. Simultaneously, the highest reaction tendency for the direct FAOR pathway and the best tolerance to poisonous CO intermediate can also be realized by m-PtTe NT. More importantly, even in a single-cell medium, the m-PtTe NT can display a much higher MEA power density (171.4 mW cm–2) and stability (53.2% voltage loss after 5660 s) than those of commercial Pt/C, demonstrating the great potential in operating DFAFC device. The in-situ Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy jointly demonstrate that the unique nanostructure of m-PtTe NT can effectively optimize dehydrogenation steps and inhibit the CO intermediate adsorption, as well as promote the oxidation of noxious CO intermediate, thus achieving the great improvement of FAOR activity, poisoning tolerance, and stability. Density functional theory calculations further reveal that the direct pathway is the most favorable on m-PtTe NT than r-Pt2Te3 NT and t-PtTe2 NT. The higher activation energy to produce CO and the relatively weaker binding with CO of m-PtTe NT result in the better CO tolerance. This work achieves remarkable FAOR and MEA performances of advanced Pt-based anodic catalysts for DFAFCs via a phase engineering strategy.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptULluGzEQJQIHluy4Sx2wdOF1eOxBlYZ8Ar4AOfWCOyQlCrukQu4aFtz4H_KH-RJTkJw0rgYzeMe8h9B3Sk4pYfTnUkI85UA4p9UXNKYFI1lBWbmHxoQQllWi5CN0EOMyrTkTdB-NeJWzCWH5GL1e2_miXeOZbjX09lnj2dr1Cx1txN7gO-88tNZZyB4XMmqFH1vZWzd0f9_-POm2HYIdOnwvne-DXkk3x8YHfG5DUsOXPnQW8BlYhR9erEpM7_BU9rJdJ4Nv6KuRbdRHu3mIfl1ePE2vs9uHq5vp2W0mOcv7rGCTRhfKGMqgAhBN0xBTpTBQkdJwwSnVZa5Aa1BVCUQIKbhKNzCqEUXDD9HxVncV_O9Bx77ubIT0vHTaD7Fmgk8qPqGcJOjJFgrBxxi0qVfBdjKsa0rqTd31pu56V3eC_9gpD02n1T_wR7__rTespR-CS0E_13oHII2MYQ</recordid><startdate>20230719</startdate><enddate>20230719</enddate><creator>Dong, Chengyuan</creator><creator>Wang, Xinyao</creator><creator>Zhu, Zhipeng</creator><creator>Zhan, Changhong</creator><creator>Lin, Xin</creator><creator>Bu, Lingzheng</creator><creator>Ye, Jinyu</creator><creator>Wang, Yucheng</creator><creator>Liu, Wei</creator><creator>Huang, Xiaoqing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3016-7381</orcidid><orcidid>https://orcid.org/0000-0003-2672-0420</orcidid><orcidid>https://orcid.org/0000-0002-3356-3403</orcidid></search><sort><creationdate>20230719</creationdate><title>Highly Selective Synthesis of Monoclinic-Phased Platinum–Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis</title><author>Dong, Chengyuan ; Wang, Xinyao ; Zhu, Zhipeng ; Zhan, Changhong ; Lin, Xin ; Bu, Lingzheng ; Ye, Jinyu ; Wang, Yucheng ; Liu, Wei ; Huang, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-529be5dff12c7cc8bbb0f7000c706f38311e64dceecd76c088a83d1e6cfdb85b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chengyuan</creatorcontrib><creatorcontrib>Wang, Xinyao</creatorcontrib><creatorcontrib>Zhu, Zhipeng</creatorcontrib><creatorcontrib>Zhan, Changhong</creatorcontrib><creatorcontrib>Lin, Xin</creatorcontrib><creatorcontrib>Bu, Lingzheng</creatorcontrib><creatorcontrib>Ye, Jinyu</creatorcontrib><creatorcontrib>Wang, Yucheng</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chengyuan</au><au>Wang, Xinyao</au><au>Zhu, Zhipeng</au><au>Zhan, Changhong</au><au>Lin, Xin</au><au>Bu, Lingzheng</au><au>Ye, Jinyu</au><au>Wang, Yucheng</au><au>Liu, Wei</au><au>Huang, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Selective Synthesis of Monoclinic-Phased Platinum–Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-07-19</date><risdate>2023</risdate><volume>145</volume><issue>28</issue><spage>15393</spage><epage>15404</epage><pages>15393-15404</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Designing efficient formic acid oxidation reaction (FAOR) catalysts with remarkable membrane electrode assembly (MEA) performance in a direct formic acid fuel cell (DFAFC) medium is significant yet challenging. Herein, we report that the monoclinic-phased platinum–tellurium nanotrepang (m-PtTe NT) can be adopted as a highly active, selective, and stable FAOR catalyst with a desirable direct reaction pathway. The m-PtTe NT exhibits the high specific and mass activities of 6.78 mA cm–2 and 3.2 A mgPt –1, respectively, which are 35.7/22.9, 2.8/2.6, and 3.9/2.9 times higher than those of commercial Pt/C, rhombohedral-phased Pt2Te3 NT (r-Pt2Te3 NT), and trigonal-phased PtTe2 NT (t-PtTe2 NT), respectively. Simultaneously, the highest reaction tendency for the direct FAOR pathway and the best tolerance to poisonous CO intermediate can also be realized by m-PtTe NT. More importantly, even in a single-cell medium, the m-PtTe NT can display a much higher MEA power density (171.4 mW cm–2) and stability (53.2% voltage loss after 5660 s) than those of commercial Pt/C, demonstrating the great potential in operating DFAFC device. The in-situ Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy jointly demonstrate that the unique nanostructure of m-PtTe NT can effectively optimize dehydrogenation steps and inhibit the CO intermediate adsorption, as well as promote the oxidation of noxious CO intermediate, thus achieving the great improvement of FAOR activity, poisoning tolerance, and stability. Density functional theory calculations further reveal that the direct pathway is the most favorable on m-PtTe NT than r-Pt2Te3 NT and t-PtTe2 NT. The higher activation energy to produce CO and the relatively weaker binding with CO of m-PtTe NT result in the better CO tolerance. This work achieves remarkable FAOR and MEA performances of advanced Pt-based anodic catalysts for DFAFCs via a phase engineering strategy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37429024</pmid><doi>10.1021/jacs.3c03317</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3016-7381</orcidid><orcidid>https://orcid.org/0000-0003-2672-0420</orcidid><orcidid>https://orcid.org/0000-0002-3356-3403</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-07, Vol.145 (28), p.15393-15404
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2839739130
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Highly Selective Synthesis of Monoclinic-Phased Platinum–Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Selective%20Synthesis%20of%20Monoclinic-Phased%20Platinum%E2%80%93Tellurium%20Nanotrepang%20for%20Direct%20Formic%20Acid%20Oxidation%20Catalysis&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Dong,%20Chengyuan&rft.date=2023-07-19&rft.volume=145&rft.issue=28&rft.spage=15393&rft.epage=15404&rft.pages=15393-15404&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c03317&rft_dat=%3Cproquest_cross%3E2839739130%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a324t-529be5dff12c7cc8bbb0f7000c706f38311e64dceecd76c088a83d1e6cfdb85b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839739130&rft_id=info:pmid/37429024&rfr_iscdi=true